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Wakeling JM, Horn T. Neuromechanics of muscle synergies during
cycling. J Neurophysiol 101: 843–854, 2009. First published Decem-
ber 10, 2008; doi:10.1152/jn.90679.2008. Muscle synergies have been
proposed as building blocks that could simplify the construction of motor
behaviors. However, the muscles within synergistic groups may have
different architectures, mechanical linkages to the skeleton, and biochem-
ical properties, and these put competing demands on the most appropriate
way to activate them for different mechanical tasks. This study identifies
the extent to which synergistic patterns of muscle activity vary when the
mechanical demands on a limb were altered, and additionally identifies
how consistent the spectral profiles of the electromyographic (EMG)
intensities were across the different movement tasks. The muscle activ-
ities were measured with surface EMG across 10 muscles in the leg
during cycling at a range of loads and velocities. The EMGs were
quantified by their intensities in time-frequency space using wavelet
analysis; the instantaneous patterns of activity identified using principal
component analysis, statistically compared and further visualized using
the varimax rotation. Variability (35.7%) in the patterns of activity
between the muscles were correlated with the torque and velocity of the
pedal crank. Anatomic groups of muscles share a common mechanical
action across a joint; uncoupling between such muscles was identified in
68.8% of the varimax patterns that encompassed all 10 muscles and
20.8–29.5% of the activity patterns when the anatomic groups were
analyzed separately. The EMG spectra showed greatest heterogeneity for
the gastrocnemii. These results show that the activity of muscles within
anatomic groups is partially uncoupled in response to altered mechanical
demands on the limb.

I N T R O D U C T I O N

Movements are achieved by the concerted action of the many
muscles throughout the body. The muscles act to not only
produce or dissipate the work required for each movement but
also to redistribute that work among the different body seg-
ments (Zajac et al. 2002). Thus many muscles may be neces-
sary for a coordinated motion even if their primary functions
do not appear to power that movement. The question of how
the CNS coordinates activity between different muscles is
central to an understanding of motor control.

Muscle synergies have been described as coherent activa-
tions, in space or time, of groups of muscles (d’Avella and
Bizzi 2005). These synergies can simplify the coordination of
complex movements with the resultant activation of a set of
muscles being derived from a combination of synergies that is
appropriate to the movement behavior. Muscle synergies for
groups of 7–16 muscles have been described for a range of
activities. The kinematics (direction) of hindlimb kicking in
frogs has been related to a set of three time-varying muscle
synergies (d’Avella et al. 2003). Four main muscle synergies

are used by the cat for postural corrections in response to
lateral perturbations and the level of synergies activated is
related to the direction of the perturbation (Ting and Macpher-
son 2005). In man, five synergies have been shown to control
�16 different muscles during walking at a range of speeds and
gravitational loads (Ivanenko et al. 2004). Simulation studies
have predicted that six muscle synergies can robustly explain
forward pedalling (Raasch and Zajac 1999), and observations
show that backward pedalling can be achieved with similar
synergies if the synergy responsible for changes in anterior/
posterior pedal direction is reversed in its timing (Ting et al.
1999). Basic muscle synergies are shared across different
locomotor behaviors, as demonstrated between swimming,
walking and jumping in the frog (d’Avella and Bizzi 2005). A
common feature that has been identified about muscle syner-
gies is that they are related to the position of the limb during a
gait cycle (Raasch and Zajac 1999; Ting et al. 1999) or to the
direction of the movement (d’Avella et al. 2003; Ting and
Macpherson 2005); and so muscle synergies have been pro-
posed as building blocks that could simplify the construction of
motor behaviors (d’Avella et al. 2003).

The function of individual muscles is largely determined by
their architecture (Lieber and Fridén 2000), moment arms, and
fiber-type composition (Rome et al. 1988). As the pennation
angle increases, the physiological cross-sectional area (area
perpendicular to the fiber direction) will increase and is typi-
cally accompanied by a decrease in the ratio of the muscle fiber
length to the whole muscle length; these changes predispose
the muscle to generate greater forces with reduced fascicle
strains (Lieber and Fridén 2000). Increases in the moment arm
between the muscle and joint result in increases in muscle
strain and strain rate for a given joint motion (Rome et al.
1988); correspondingly, if a muscle inserts further away from
a joint, it will generate greater joint torques but move the joint
through a smaller range of motion and velocity for a given
muscle contraction (Hildebrand and Goslow 2001). In this
study, we use the term anatomic groups to refer to muscles that
share a common mechanical action across a joint. The preced-
ing arguments predict that when muscles from the same ana-
tomic group have different moment arms they will be better
suited to different mechanical tasks. Different muscle fiber
types have optimal contraction speeds at different velocities
(strain rates), and so faster muscle may be suited to faster move-
ments (Rome et al. 1988). Muscles from an anatomic group may
have varied architectural and fiber-type properties and so should
be expected to contribute differently to movements with different
mechanical demands. For instance, within the ankle extensor
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group, the soleus muscle has a greater proportion of slow
muscle fibers (Johnson et al. 1973) and has a lower fiber to
muscle length ratio (Lieber and Fridén 2000; Wickiewicz et al.
1983) than either the lateral or medial gastrocnemius. It has
been shown that the muscle activity in the soleus and medial
gastrocnemius in the cat both increase with increased intensi-
ties of locomotion (Kaya et al. 2003), but during the paw-shake
(which is a high-frequency contraction), the activity in the
medial gastrocnemius is large, but it is virtually absent in
the soleus (Smith and Spector 1981; Smith et al. 1980); thus
the relative activity found between these muscles during walk-
ing can be uncoupled for the different mechanical function of
the paw shake. Similar results have been reported in man
where the gastrocnemii are used more for higher speed con-
tractions and the soleus for higher load contractions during
cycling (Wakeling et al. 2006).

For an animal to perform a range of behaviors, its limbs are
required to move in a controlled fashion at a wide range of
velocities and loads. One study to investigate how muscle
synergies adapt to a range of locomotor speeds quantified the
synergies from �16 muscles during walking and running
between 1 and 5 m s�1 in man (Ivanenko et al. 2004). The
EMG recordings were initially normalized for each condition
before factor analysis was used to determine muscle synergies.
This approach meant that the synergies did not reflect the
absolute levels of EMG or the relative changes in EMG
between the muscles; however, it was reported that the activa-
tion patterns of individual muscles varied dramatically with
speed (Ivanenko et al. 2004). The muscle synergy arguments
for coherently recruiting muscles together is different from the
architectural and fiber-type (anatomic group) arguments that
suggest that muscles may be best used independently. Clearly,
muscle synergies and patterns of motor control must adapt to
the velocity of the locomotor task and this could potentially
occur with the introduction of new synergies or the modulation
of already active synergies. However, the effect of velocity has
not been determined for muscle synergies.

The purposes of this study were first, to determine the extent to
which the patterns of activity across a range of muscles in the leg
are modulated by the mechanics of the movement. The term
pattern of activity is used to refer to the relative levels of activation
that can occur across a set of muscles at a set moment in time. A
pattern of activation may correspond to a muscle synergy that is a
component of the task, and it may refer to synergy that has been
modulated by feedback: we cannot distinguish between these two
cases in this study and so use the term pattern of activity rather
than synergy. If the muscle synergies were determined purely
by the locomotor behavior (i.e., walking or cycling), then the
patterns of activity would be governed by kinematic position
(that is related to the crank angle during cycling) and not to the
velocity or load of the task. However, here we hypothesized
that a significant (�10%) proportion of the patterns of activity
are modulated due to the movement mechanics (the load and
velocity required during the task). The second purpose was to
test the hypothesis that activity of muscles within an anatomic
group would show a significant (�10%) uncoupling when the
limb was challenged with a range of mechanical conditions. An
additional aim of the study was to characterize the time-
varying spectral properties of the leg muscles during these
cycling tasks to compliment previously reported data from the
triceps surae muscles (Wakeling et al. 2006).

M E T H O D S

Approach to the problem

To relate changes in patterns of muscle activation with changes in
load and speed, it is necessary to minimize other potential confound-
ing effects such as altered gait kinematics, stability control, or weight
support. Increases in velocity during walking and running typically
involve increases in (ground reaction) forces, making it difficult to
experimentally uncouple load and velocity. Pedalling on a stationary
cycle ergometer provides a good experimental model for studying the
effect of varying locomotor load and velocity on the motor control
patterns because the kinematics are constrained to one pedalling gait,
the muscle coordination patterns applicable to propulsion should
dominate, and load and velocity can be independently varied. To
minimize any possible bias to the EMG signals that can occur with
changes in muscle temperature or fatigue, the subjects were required
to warm up before testing, and the experimental conditions were
presented in a randomized block fashion. The fastest pedal rates (140
revolution/min, rpm) are challenging or even impossible for untrained
cyclists, and so it was necessary to recruit experienced cyclists so that
a wide range of mechanical conditions could be tested.

Muscle synergies can be quantified by the time-varying patterns of
the levels of EMG across groups of muscles and a number of different
matrix factorization algorithms have previously been used to deter-
mine muscle synergies (Tresch et al. 2006). A common feature of all
factor analyses is that each factor does not necessarily resemble the
actual levels of activity present in each muscle, instead the measured
activity patterns are represented by the vector products of the factors
(principal component, PC weightings) and their loading scores. For
instance, the first PC explains the largest source of variation in the set
of muscle activity patterns and typically resembles the mean activity
pattern across the set; on average all the muscles are active to some
degree and so the first PC weighting shows a contribution of every
muscle. This does not imply that all muscles were active simulta-
neously because the actual activity patterns measured additionally
have contributions (both positive and negative) from the other PCs.
The interpretation of the PCs can be simplified by using a varimax
rotation to minimize the number of variables with high loadings on
each component (Ivaneko et al. 2004; Kaiser 1958). These rotated
components are more similar to those of the muscle activity patterns
than the PCs (Chau 2001; Davis and Vaughan 1993). In this study, we
use principal component analysis to characterize the EMG signals.
The identified factors are similar to the muscle synergies described in
previous studies (Ivaneko et al. 2004; Tresch et al. 2006), but here we
refer to them as patterns of activity because the experimental protocol
may result in them describing both synergies and the modulations to
those synergies that occur with altered movement mechanics.

Cycling

Nine male cyclists (age 33.9 � 2.9 yr; mass: 76.1 � 4.4 kg; height:
1.79 � 0.02 m: means � SE) were tested at the Neuromuscular
Mechanics Laboratory, School of Kinesiology, Simon Fraser Univer-
sity. Subjects gave their informed consent in accordance with the SFU
Office of Research Ethics approval. The subjects were club to national
level racing cyclists.

Subjects cycled with clipless pedals on a stationary dynomometer
(SRM indoor trainer, Schoberer Rad Me�technik, Jülich, Germany),
equipped with torque sensing cranks (SRM Powermeter). Subjects
initially cycled at a low power for 5 min to get accustomed to the
dynomometer, and then data were recorded for nine experimental
conditions presented three times in a randomized block format. Data
were recorded for 30 s of steady cycling for each condition, and a rest
of 45 s was given between conditions. The test conditions were: 60,
80, 100, 120, or 140 rpm at a crank torque of 6.5 N m and additionally
crank torques of 12.9, 25.1, 32.4, and 39.9 N m at a pedal cadence of
60 rpm.
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Bipolar Ag/AgCl surface EMG electrodes (10 mm diam, 21 mm
interelectrode distance) were placed in the center of the muscle bellies of
the tibialis anterior (TA), medial gastrocnemius (MG), lateral gastrocne-
mius (LG), soleus (Sol), vastus medialis (VM), rectus femoris (RF),
vastus lateralis (VL), biceps femoris long head (BF), semitendinosus
(ST), and gluteus maximus (GM) on the left leg after prior removal of the
hair and cleaning with isopropyl wipes. EMG signals were amplified
(Biovision, Wehrheim, Germany) and recorded at 2,000 Hz via a 16-bit
A/D convertor (USB-6210, National Instruments, Austin, TX). Heart rate
was monitored using a T31 transmitter and wireless receiver (Polar
Electro Canada), and the pedal position was determined once per cycle
via a magnetic pedal switch that was activated when the left pedal crank
was nearly vertically up: these data were recorded simultaneously with
the EMG. The crank power (mechanical power required to turn the
cranks) was sampled at 1 Hz and monitored and recorded on a separate
computer using SRMWin software, and the mean crank power and torque
calculated for trial.

Data analysis

The myoelectric signals were resolved into their EMG intensities in
time-frequency space using wavelet techniques (von Tscharner 2000).
The total EMG intensity at each time point was calculated across the
frequency band (11–432 Hz) and is a measure of the time-varying
power within the signal. The total EMG intensity is a positive
envelope quantifying the EMG and is equivalent to twice the square
of the root-mean-square of the EMG; the time resolution for deter-
mining the EMG intensity was �20 ms for frequencies �100 Hz. The
EMG intensity spectrum is equivalent to the power spectrum from the
EMG signal. The total EMG intensity and the EMG intensity spectra
were calculated for each of 28 pedal cycles per trial where each cycle
started with the left crank at top-dead-center. The total EMG intensity

and the EMG intensity spectra were sub-divided into 100 equally
spaced time windows. The EMG intensities for each muscle and
subject were normalized to the mean of the total intensities for all
spectra across all trials.

At each time window, a pattern of activity was defined as the
normalized total intensities for the 10 muscles. The dominant patterns
of activity were determined by principal component, PC, analysis
based on a previous study (Wakeling and Rozitis 2004). Data were
arranged into a P � N matrix A, where P � 10 muscles per pattern,
and n � 680,400 time points analyzed (9 subjects � 9 conditions �
3 blocks � 28 pedal cycles per trial � 100 time windows per cycle).
The covariance matrix B was calculated from the data A, and the PC
weightings determined from the eigenvectors � of covariance matrix
B. The importance of each PC was given by the eigenvalue for each
eigenvalue-eigenvector pair with the greatest absolute eigenvalues
corresponding to the most principal PCs. The relative proportion of
the EMG patterns explained by each PC was given by ��B � and the
loading scores for each PC for the N time points were given by ��A.
Each instantaneous pattern of activity can be reconstructed from the
vector product of the PC weightings and the PC loading scores. The
PCs were further expressed using the varimax rotation on a subspace
of the muscle activity patterns (Kaiser 1958) to simplify their visual
interpretation. The subspace was defined as the space covered by the
first six PCs to span the six muscle synergies previously predicted for
forward pedalling (Raasch and Zajac 1999). These simplified patterns
were termed varimax patterns after the PCs had been transformed with
the varimax rotation.

The patterns of activity within the anatomic groups of muscles
(Sol-MG-LG, VM-RF-VL, and BF-ST) were additionally determined
by repeating the PC analysis using P � 2 or 3 corresponding to
whether each anatomic group had two or three muscles, respectively.

FIG. 1. Excerpts of raw electromyographic (EMG) traces from 1 subject from 3 conditions. Each panel shows 3 s of activity. Gray dashed lines show the time
of the left crank at top-dead-center. The scale is the same for each muscle across the 3 conditions.
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To determine the EMG intensities at different spectral frequen-
cies, the EMG intensities were additionally calculated for specific
high- and low-frequency bands. This process is similar in concept
to previous studies where the intensity has been summed across
specific groups of wavelets to yield high- and low-frequency bands
(Mündermann et al. 2006; Wakeling et al. 2002b); however, in this
study, we specifically tuned the analysis to each muscle by calcu-
lating two specific frequency bands that explain the majority of the
signal (Hodson-Tole and Wakeling 2007). In brief, PCs for the

EMG intensity spectra for each muscle were calculated from the
covariance matrices of the matrices of EMG intensity spectra for
each muscle and subject (Wakeling and Rozitis 2004). The PCs
were calculated with no prior subtraction of the mean data and
describe the components of the entire signal (Wakeling and Rozitis
2004). Two intensity spectra i(f) were calculated from linear
combinations of the first two PCs that generated positive intensities
at all frequencies and yielded the highest and lowest mean fre-
quencies. Two wavelets were constructed to describe these spectra

FIG. 2. Mean EMG intensity per pedal revolution as a function of crank torque and pedal cadence. Each point shows the mean � SE (n � 756, covering all
subjects, conditions and pedal revolutions).
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using least-squares minimization of a wavelet function �(f) to i(f)
(Hodson-Tole and Wakeling 2007)

�� f 	 � � f

fc
�fcs

e��f
fc


 1� fcs

,

where fc is the center frequency of the wavelet and s is a scaling factor
describing the width and shape (von Tscharner 2000). The two defined
wavelets were termed �h(f) and �l(f) for high- and low-frequency
bands, respectively. The EMG intensities were calculated for �h and
�l and in a similar manner to the initial wavelet analysis (von
Tscharner 2000). Each measured EMG intensity spectrum i(f) was
represented by the linear combination of the optimized wavelets �h

and �l and their loading scores Ch and Cl, using nonnegative facto-
risation (Hodson-Tole and Wakeling 2007)

i� f 	 � Ch�h� f 	 � C1�1� f 	

Ch and Cl were calculated for each time point to give the time-varying
Ch(t) and Cl(t) and were then normalized for each muscle and subject
to the mean of Ch(t) 
 Cl(t) at each time point for all trials.

To assess whether the work load was low enough not to induce
fatigue, the effect of the protocol block was determined on the mean
heart rate during each trial. This was assessed using a multivariate
analysis of covariance of the heart rates using the following factors:
subject (random), block number, and crank power; the crank power

FIG. 3. Total EMG intensity during each
pedal cycle for the different muscles. Time 0
indicates the pedal at top-dead-center. Each
trace shows the mean (thick line) � SE (thin
lines; n � 756). Gray line, data for the trials
at 60 r.p.m. and 6.5 N m crank torque; solid
black lines, 60 r.p.m. and 40 N m; dashed
black lines, 140 r.p.m. and 6.5 N m.
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was included as a covariate. To assess whether the muscle activity
patterns were associated with crank torque or pedal cadence, the effect
of these parameters on the PC loading scores was tested using
multivariate analysis of covariance using the following factors: sub-
ject (random), time window within pedal cycle, pedal cadence (co-
variate), and crank torque (covariate). EMG analyses (wavelet, PC,
and varimax rotation) were carried out using Mathematica 6 software,
Wolfram Research, Champaign, IL). Statistical analyses were pro-
cessed using Minitab version 14 (Minitab Inc., State College, PA). All
data are presented as means � SE, and statistical tests were deemed
significant at � � 0.05.

R E S U L T S

The heart rate during the trials showed a significant corre-
lation with the mechanical power output, but there was no
significant difference in heart rate between the three blocks of
the protocol.

The raw EMG showed that each muscle had phasic activity
(Fig. 1) that varied in timing and amplitude. The patterns of
muscle activity varied with both crank torque and pedal ca-
dence. The mean EMG intensities per pedal revolution are
shown in Fig. 2. All muscles showed the least mean EMG
intensity for the condition with lowest mechanical power
output (60 rpm and 6.5 N m). The mean EMG intensities
increased with both increases in crank torque and with in-
creases in pedal cadence. The way in which the mean EMG
intensity varied with the mechanical demands differed between
muscles. The TA showed greatest increases in mean EMG

intensity with increased pedal cadence. The ankle extensor
muscles showed different functions with the Sol being used
more for the higher crank torque and the LG and MG used
more for the higher cadence tasks. The MG was used less for
the high torque tasks than the LG. The knee extensors showed
similar patterns of mean EMG intensity except for at the
highest crank torque where the RF showed greater activity than
the VM and VL. From within the hamstring muscles, the ST
showed a greater dynamic range across the conditions than the
BF. The GM showed the greatest dynamic range of any muscle
tested, and this reflected the fact that very little GM activity
occurred for the low power-output tasks.

The EMG intensities, when pooled across all subjects,
showed phasic patterns of activity in a similar manner to the
raw traces (Fig. 3). For the ankle extensors, the maximum
EMG intensity was greater for the high cadence trials for the
MG and LG, but similar between the high cadence and high
torque trials for the soleus. The Sol showed a pronounced shift
in timing with activity being earlier for the higher cadence
trials (�9% of a pedal cycle; Figs. 3 and 4). Within the
quadriceps, the RF showed a pronounced phase advance for the
high cadence trials so that it was asynchronous to the VM and
VL at 140 rpm and 6.5 N m, but the timing of the three muscles
was much more closely matched at the 60 rpm and 40 N m
trials (Fig. 3). The EMG intensity profiles showed that the BF
had a much greater (57% increase) maximum intensity at the
140 rpm and 6.5 N m trial than for 60 rpm and 40 N m trial,
whereas the ST was much more similar (11% increase) be-

z

FIG. 4. EMG intensities for the different mechanical tasks. Data are the mean from all trials and all subjects. Times are normalized to a pedal revolution with
time 0 denoting the top-dead-center position for the crank.
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tween the mechanical extremes (Fig. 3). Both these hamstrings
showed a relatively greater phase advance for the higher
cadence trials, and the ST showed a pronounced second peak
of EMG intensity (60% pedal cycle) for 60 rpm and 40 N m
that did not occur for the higher cadence trials. The GM
showed a pronounced phase advance at the faster cadences
(Figs. 3 and 4).

The patterns of activation between the muscles can be
determined from the PC analysis of the patterns of their
time-varying EMG intensities (Fig. 5). More than 89% of the
activity patterns were explained by the first six components.
PC I showed a general level of activity for all muscles. PC II
partitioned the muscles into anatomic groups with the triceps
surae and hamstrings giving positive weightings while the TA,
quadriceps, and GM gave negative weightings. The ANCOVA
for the PC loading scores showed how the different PCs
responded to the varied mechanical demands between the
conditions. The PC loading scores showed significant covari-
ance with pedal cadence and crank torque (Fig. 5) and addi-
tionally showed variation between subjects (P � 0.001). In this
study, we were interested in the sources of intrasubject vari-
ability, and so once the subject effect was factored out by the
ANCOVA, it was not considered further. The coefficients that
quantified the covariance of the PC loading scores with pedal
cadence or crank torque showed opposite signs for PC II, IV,
and VI and between them these components explain 35.7% of
the patterns of activity between the muscles (Fig. 5). Thus a
large proportion of the patterns of activity between the muscles
respond differently to the load and velocity of the cycling task,
independent of the position of the pedal.

The varimax patterns showed uncoupling of activity be-
tween muscles within anatomic groups (Fig. 6). Uncoupling of

activity between the two gastrocnemii and the soleus was
explained by varimax pattern VI; and varimax pattern II
additionally explained an uncoupling of activity between MG
and LG. Activity in the two vastii VM and VL were uncoupled
from that in the RF in varimax patterns III–VI. Uncoupling of
activity between BF and ST was explained by varimax pattern
III. The varimax patterns that explained uncoupling between
different muscles within the anatomic groups occupied a total
of 68.8% of the varimax pattern subspace.

The co-activation between muscles within anatomic groups
explained no more than 79% of the activity patterns within
those groups (Fig. 7). The second PCs showed that within the
triceps surae 20.7% of the EMG intensities corresponded to an
uncoupling of the soleus from the gastrocnemii, and in the
quadriceps, 23.4% of the EMG intensities corresponded to an
uncoupling of the RF from the VM and VL. In both these
cases, these PC IIs accounted for uncoupling of one- from
two-joint muscles. The third PCs explained uncoupling of the
MG and LG in the triceps surae and of the VM and VL in the
quadriceps; in both these muscle groups, these muscles origi-
nate from different sides of the leg. The second PC for the
hamstrings showed that uncoupling of the BF long head from
the ST accounted for 20.8% of the activity patterns: these are
both two-joint muscles that originate from the ischial tuberos-
ity but they insert on the tibial condyles on the opposite sides
of the knee.

Coefficients that characterized the two major frequency com-
ponents from the EMG intensity spectra are given in Table 1.
When considered across all muscles, �h had a mean center
frequency of 105.1 Hz and �l had a mean center frequency of 51.7
Hz. For both �h and �l, the center frequencies of these optimized
wavelets were lower for the more proximal muscles.

FIG. 5. Principal component weightings
for the patterns of activity among the 10
muscles calculated across all conditions. The
percentage of the signal explained by each
component is shown. Where the component
showed a significant covariance with either
pedal cadence or crank torque then the coef-
ficient of the covariance is indicated.
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The EMG intensities at high and low frequency bands, Ch(t)
and Cl(t), respectively, were positively correlated for all muscles
(r � 0.978–0.997); however, specific patterns emerged for the
different muscles (Fig. 8). The EMG intensity showed a predom-
inance for the higher frequency band for the MG and LG at the
faster cadence trials. The quadriceps muscles showed the greatest
correlations in EMG intensities between the high- and low-
frequency bands (r � 0.995–0.997). The GM showed the lowest
correlation (r � 0.978), and its EMG intensity showed a predom-
inance for the higher frequency band at the higher torque trials.

D I S C U S S I O N

There is current debate about the reliability of EMG mea-
sures to characterize activity patterns due to the variability that
can occur in electrode placements. The proximity of the EMG
electrodes to a muscle’s innervation zone can affect features of
the EMG signal (de Luca 1997), and the innervation zone can
show considerable variability in its location for certain muscles
(Rainoldi et al. 2004). However, normalized measures of EMG
amplitude have been shown to remove the sensitivity to elec-
trode placement for cycling-based studies (Malek et al. 2006),
and such an approach has been used here to quantify the
patterns of activity. We have recently used cross-correlation to
shown that the cross-talk in raw EMG signal between adjacent
muscles for our cycle tests has r2 � 0.04 (Wakeling 2008b),
and thus �96% of the EMG signal measured from an electrode

can be ascribed to that muscle. Compartmentalization within a
muscle can result in altered activity patterns from different
muscle regions, and these vary with mechanical demand
(Wakeling 2008b), but recording from a standard location for
each subject ensures that similar anatomical compartments are
compared. The PC analysis determines the dominant compo-
nents of the signal, and so any unbiased, random noise will be
included in the lower-order components. This study considered
the major six PCs for the analysis of patterns of activity, and
thus the remaining components (accounting for 11% of the
EMG signal) were excluded. It is likely that any residual noise
in the signals that was not filtered by the analysis techniques
were contained in these excluded components.

As the pedalling cadence increased, a common response
across the muscles tested was for the EMG intensity to advance
to relatively earlier times within each pedal cycle: this is
because the electromechanical delay represents an increasingly
large fraction of the cycle duration at higher pedalling rates
(Neptune et al. 1997). Studies reporting on the discrete activ-
ities from distinct muscles have shown that the relative levels
of EMG activity varied between muscles in response to in-
creased pedalling rates (Neptune et al. 1997; Wakeling et al.
2006). In this study, the response of the individual muscles to
the varied mechanical demands also differed with the faster
pedal cadences being associated with increases in EMG inten-
sities for TA, MG, and LG, advances in timing for RF and GM,
and changes in the duration of activity for BF and ST (Fig. 3).

FIG. 6. Weightings of the varimax pat-
terns from the muscle activity pattern sub-
space. The subspace was taken from the 1st
6 principal components shown in Fig. 5. The
percentage of the subspace explained by
each varimax patterns is shown.
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Within each anatomic group of muscles there was evidence for
uncoupling of the EMG intensities between the individual
muscles: MG and LG varied in their relative EMG intensities,
and both muscles varied in timing and intensity from Sol; VM
and VL showed similar patterns of EMG intensity, and neither
showed the pronounced phase advance for faster cadences seen
in RF; BF and ST varied in their relative EMG intensities and
the shape of the EMG intensity profiles (Fig. 3). Such varia-
tions between muscles within anatomic groups accounted for
68.8% of the varimax patterns (Fig. 6) and 20–30% of signals
when considered in individual anatomic groups (Fig. 7). The
data thus clearly support both hypotheses that a significant
proportion of the patterns of activity between the leg muscles

are modulated due to the movement mechanics and that activ-
ity patterns between muscles within anatomic groups show
significant uncoupling when the limb is challenged with a
range of mechanical conditions. The patterns of activation of
individual muscles within the synergies are thus clearly mod-
ulated in association with the mechanical demands on the limb.

The patterns of activity were calculated from EMG data that
were normalized to the mean across all conditions. This ap-
proach retained the information about the relative levels of
activity between the conditions and thus would focus on the
more demanding high-torque low-cadence and low-torque
high-cadence conditions where we hypothesized that there
would be differences in pattern. An alternative approach would
be to normalize each pedal cycle to the mean activity across all
the muscles for that cycle: this would remove information
about the relative levels of activity between conditions but
would place an equal weight on the less-demanding conditions
where there was less variation in mechanical demand. When
tested, this alternate approach resulted in similar patterns of
activity and the same conclusions regarding the uncoupling of
activity within anatomic groups and modulations of the pat-
terns of activity with crank torque and pedal cadence. Thus the
patterns of activity identified in this study were relatively
insensitive to the overall levels of muscle activity, and the
conclusions were robust with regard to the normalization
approach used.

It is not clear what factors cause the modulation of activity
between some of the muscle synergies although evidence from
the cat demonstrates that the some of the necessary information
encoding limb velocity is present in the spinocerebellar tract
(Poppele et al. 2002). Simulation studies have shown that
within the triceps surae group the uniarticular Sol and biartic-
ular MG and LG muscles act primarily with the same function

FIG. 7. Principal component weightings for the patterns of activity between the muscles in each anatomic group. The percentage of the signal explained by
each component is shown.

TABLE 1. Coefficients that characterizes the two major frequency
components from the electromyographic intensity spectra

Muscle

�l �h

fc s fc s

TA 70.78 � 9.04 0.153 � 0.017 118.75 � 7.08 0.142 � 0.010
MG 74.80 � 10.2 0.099 � 0.020 173.00 � 13.40 0.084 � 0.011
LG 60.54 � 5.46 0.126 � 0.013 132.90 � 11.20 0.096 � 0.010
Sol 64.91 � 2.59 0.142 � 0.018 124.72 � 6.55 0.137 � 0.017
VM 52.78 � 1.76 0.188 � 0.011 97.87 � 1.97 0.181 � 0.012
RF 41.49 � 2.65 0.160 � 0.016 82.64 � 4.83 0.174 � 0.022
VL 44.45 � 3.35 0.211 � 0.012 82.85 � 5.10 0.206 � 0.019
BF 47.56 � 3.64 0.116 � 0.011 110.41 � 6.76 0.099 � 0.011
ST 36.69 � 2.20 0.172 � 0.012 77.8 � 3.32 0.156 � 0.017
GM 23.44 � 1.93 0.413 � 0.070 50.3 � 3.36 0.202 � 0.029

Center frequency fc and scale s for the wavelets optimised to the low- and
high-frequency components of the electromyographic (EMG) intensity from
the different muscles. Values show means � SE (n � 9 subjects). TA, tibialis
anterior; MG, medial gastrocnemius; LG, lateral gastrocnemius; Sol, soleus;
VM, vastus medialis; RF, rectus femoris; VL, vastus lateralis; BF, biceps
femoris long head; ST, semitendinosus; GM, gluteus maximus.
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FIG. 8. Principal component loading scores Ch and Cl for all pedal conditions. The lines show the mean trajectory of the time varying loading scores for all
subjects. Trials at a crank torque of 6.5 N m, but increasing cadence are shown in blue. Trials at a cadence of 60 r.p.m., but increasing crank torque are shown
in red. The length of the dashes correlates to the mechanical power output for each trial.
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during cycling: stiffening the ankle and generating a tangential
force on the crank (Zajac et al. 2002). The relatively greater
involvement of the gastrocnemii to faster pedal cycles relative
to Sol may be driven by differences in fiber type (Johnston
et al. 1973) or architecture (Lieber and Fridén 2000; Wick-
iewicz et al. 1973) between these muscles; this supports pre-
vious observations for cycling (Wakeling et al. 2006). Further-
more, it has been shown that the faster motor units within the
MG are preferentially recruited for faster cadences (Wakeling
et al. 2006), highlighting the importance of muscle fiber type to
the muscle recruitment. Within the quadriceps the differences
in muscle fiber type and architecture among VM, RF, and VL
are less pronounced (Johnston et al. 1973; Wickiewicz et al.
1973). All three muscles cross the knee joint where they act as
extensors, however, the RF additionally crosses the hip. A study
of the functions of these muscles, based on their EMG signals,
concluded that the VM and VL were used more for the extensor
phase of the pedal cycle with the RF being used more for the
flexor and top-transition regions of the crank (Neptune et al. 1997;
positions defined by Raasch et al. 1997). The relative changes in
EMG intensity and timing between these muscles may reflect
their varied mechanical roles during the pedal cycle. The BF long
head and SM are both biarticular muscles originating on the
ischial tuberosity and inserting on the tibial condyles, they both
have long muscle fascicles and relatively high fiber to muscle
length ratios (Lieber and Fridén 2000; Wickiewicz et al. 1983).
Based on these architectural properties it may be assumed that
these muscles act as close synergists in their activity, but this study
has shown that the EMG intensity shows considerable differences
in the relative intensities and timing of the EMG (Fig. 3).

Cycling studies have typically considered the pedalling
motion to be kinematically constrained in the sagittal plane
(Raasch and Zajac 1999; Zajac et al. 2002) and implicitly
assumed that lateral forces and torques are negligible. Studies
into walking around curves have shown that the relative activ-
ities of the MG and LG vary according to whether they are on
the leg that is to the inside or outside of the bend; this indicates
that their activity responds to the lateral forces required to
negotiate the corners (Courtine et al. 2006). The lateral forces
that act during cycling are not known, nor is it known how such
forces vary with changing cycling mechanics. It is possible that
the uncoupling of activity between MG and LG and between
BF and ST (Fig. 7) is partially a response to altered lateral
forces required for balance and stability during cycling; this
would imply that a substantial proportion of muscle activity
patterns in the leg may be required for stability rather than
propulsion.

EMG signals with similar intensities but differing frequen-
cies can indicate the activity of different task groups within the
muscle (Wakeling et al. 2001). Separate bursts of myoelectric
activity occur with distinct spectral properties, and these can
occur within a gait cycle (von Tscharner 2000; Wakeling 2004)
and vary between locomotor conditions (Wakeling 2004;
Wakeling et al. 2006). Differences in the intrinsic properties of
the active motor units can be inferred from the spectral content
of the EMG intensities for fine-wire EMG recordings (Hodson-
Tole and Wakeling 2007; Kupa et al. 1995; Wakeling and
Syme 2002; Wakeling et al. 2002a). The spectral properties of
the EMG are altered by volume conductor effects of the
tissues, nevertheless, the differing signals from different motor
units can still be distinguished using surface EMG recordings

(Wakeling 2008a; Wakeling and Rozitis 2004). Both the mag-
nitude and frequency of an EMG can change with variations in
muscle temperature (Petrofsky and Lind 1980) and fatigue
(Petrofsky 1979); however, in this study, the initial warm-up
period followed by randomized block design of the protocol
minimized such effects. Furthermore, there was no systematic
increase in heart-rate during the tests illustrating that the work
loads were at a low and sustainable level for these subjects.
The mean frequency of the EMG may also decrease with
increased muscle strain (Doud and Walsh 1995), and we have
previously incorporated ultrasonic recordings of the fascicle
lengths of the triceps surae muscles to show that the faster
motor units are preferentially recruited for higher velocity
contractions (Wakeling et al. 2006): these findings were deter-
mined by the EMG frequencies in the gastrocnemii being
higher for faster pedal cadences than for higher crank torque
conditions. These observations are now repeated in this study
where the EMG has relatively greater intensity in the high-
frequency than the low-frequency bands for the fast cycles
(Fig. 8). It is interesting to note that the EMG intensity shows
very little variation between the high- and low-frequency bands
for the quadriceps muscles, suggesting that the recruitment
patterns within these muscles have less variation than for the
gastrocnemii. Furthermore, the GM shows a striking heteroge-
neity in the EMG intensity between the frequency bands with
the faster trials resulting in a greater proportion of EMG
intensity in the lower-frequency bands.

The many degrees of freedom of the musculoskeletal appa-
ratus provide great flexibility but make the control problem
extremely complex. Muscle synergies have been proposed as
building blocks that could simplify the construction of motor
behaviors (d’Avella et al. 2003). However, we have shown in
this study that considerable variation occurs in the activity
patterns between muscles within anatomic groups and that this
depends on the mechanical demands of the movement task.
These data indicate that the muscles of the triceps surae, the
MG, LG, and Sol, may be the most responsive to the move-
ment mechanics and in their diversity of activation patterns.
We have previously reported a mechanical link between the
type of motor units recruited and the mechanics of the move-
ment task: i.e., the preferential recruitment of faster motor units
at faster pedalling rates in the medial gastrocnemius in man
(Wakeling et al. 2006). Motor units located in muscles from
anatomic groups have been shown to share common synaptic
drive during human walking (Hansen et al. 2001). It is possible
that motor units that share common mechanical tasks have
common patterns of activation during locomotion, and this
control strategy would certainly make mechanical sense for the
coordination of locomotor activities. However, some of the
variations in the activation patterns that were elicited in this
study appear to be directly linked to limb mechanics, muscle
architecture and fiber-type composition. It is likely that the full
control strategy is a complex interaction that additionally
involves muscle energetics, proprioceptive afferents, and su-
praspinal control.
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