
Q FACTOR IN CYCLING: 

KINEMATIC AND PHYSIOLOGICAL EFFECTS 

by 

BENEDICT XAVIER EDWARD ST. JOHN DISLEY 

 

A thesis submitted to the 

University of Birmingham 

for the degree of  

DOCTOR OF PHILOSOPHY 

 

 

 

 

Human Movement Research Group 

School of Sport, Exercise and Rehabilitation Sciences 

University of Birmingham 

September 2013 

  



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



ABSTRACT 

 

Q Factor represents the horizontal distance between pedals on a bicycle, measured from 

the outside edge of each crankarm. The action of pedalling is based upon human gait, 

which utilises a step width lower than standard Q Factors (150mm for road bicycles). 

The aims of this thesis were to understand the kinematic and physiological effects of 

manipulating Q Factor. Lower Q Factors than standard afforded increased gross 

mechanical efficiency and individually determined optimal Q Factor (OQ) provided 

increased power output during laboratory time trials. Self selected Q Factor (SSQ) was 

lower than standard in trained cyclists and could be predicted using a simple suspension 

task. The use of SSQ compared with Q Factors higher and lower than SSQ provided a 

combination of kinematic stability and increased efficiency, lowering the risk of injury 

and the oxygen cost of cycling. Lower Q Factors than the standard 150mm for road 

bicycles provide performance and kinematic benefits that have not been examined 

previously. As part of the overall package of bicycle fit, individual cyclists will be able to 

make measurable improvements by finding and utilising their self selected Q Factor. 
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1. INTRODUCTION 

1.1 From walking to cycling 

The modern bicycle is a machine for recreation, exercise and professional sport. Different 

forms of bicycle are used in a variety of disciplines, from mountain bicycles with suspension, 

BMX, track and road bicycles, which are all optimised for different terrains, to provide the 

pilot with the means of moving with maximised comfort, efficiency and speed. 

The human body, through the process of nature’s engineering trial by error – evolution – 

similarly has adapted to be able to walk and run over land with comfort, efficiency and speed 

(Schmitt, 2003). The bicycle is the most efficient mode of human powered transport 

(Jeukendrup et al., 2000) and provides a  mode of travel for over four million people every 

single week in the UK (Department for Transport). The combination of man and machine 

allows us to cover distances at speeds five times that of walking with the same energy cost 

(Capelli et al., 1998;Davies, 1980;Kram & Taylor, 1990;Margaria et al., 1963; Pugh, 1974). 

The modern bicycle in its various guises finds its genesis in the “safety bicycle” of the 1800s. 

This was characterised (and different from) the penny farthing due to similar sized wheels 

front and rear, a lower sitting position closer to the ground and a chain drive system which 

permitted gearing for faster speeds without the frenetic pedalling of fixed hub based cranks 

and pedals.  
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Figure 1. The Safety Bicycle (phys.uri.edu) 

The design of the safety bicycle harked back to the velocipede and similar walking aids, but 

with the chainwheel and cranks providing propulsion. Other characteristics included a saddle 

for comfort and brakes (mounted front and/or rear) to modulate or curb speed. Linking the 

cranks and pedals to the rear wheel by use of a chain drive provided high efficiency (>95%) 

and allowed relatively free placement of the cranks in the bicycle frame. The location of the 

all important three contact points: the pedals (which are the main topic of this PhD), saddle 

and handlebars, has remained consistent since the safety bicycle design emerged, with minor 

alterations to their individual ergonomics (Berto, 2004; Herlihy, 2004). 

No other mode of movement using force generated by the human body (e.g. cross country 

skiing, hand cranked cycles, walking and running) is as economical as leg propelled cycling 

on land – at around 10mph the energy expenditure for running on flat ground is 
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approximately 2.5 times that of cycling (Goosey-Tolfret et al., 2008; MacDougall et al., 

1979, Mukherjee & Samanta, 2001; Saibene et al., 1989). It is for this reason that cycling is 

one of the most popular forms of transport, with some countries such as Denmark reporting 

nearly a quarter of all journeys <5km in length being made by bicycle, and over a third of all 

adults using a bicycle for commuting (Cycling Embassy of Denmark, 2013). It was only 

natural therefore, that the exercise of cycling would follow the paths set by running, 

swimming and jumping by evolving into a competitive sport, as well as a recreational and 

practical activity. 

1.2 Economy to profit 

Cycle racing began informally in the 1860s with exhibition races in France and later Italy. 

Penny farthings were used for racing before the chain driven bicycle took prominence in the 

1870s and 1880s. In the United Kingdom, the Bicycle Union (later renamed the National 

Cyclists’ Union) was formed in 1878 in London and charged with protecting cycle sport and 

its organisation. In 1890, the NCU banned all racing upon open roads and sought to a 

restriction to closed roads and velodromes, which led to the formation of splinter groups 

which organised covert solo timed events (time trials) rather than bunch racing. A handbook 

containing secret codenames for course locations is still in use today. Internationally there 

was also a move towards spectator friendly closed circuit events, which evolved into the 

popular six day events in America and Europe, where competitors tried to complete as much 

distance as they could around a small circuit in six days of non-stop racing, although road 

racing on open roads was still common. The Union Cycliste Internationale (UCI) was formed 

in 1900 and continues to organise and regulate cycle sport from its base in Switzerland 

(www.britishcycling.org.uk; www.uci.ch). 

1.3 Tour de France 



	
  

4	
  
	
  

The largest cycle sport event is the Tour de France, which began as a publicity stunt for the 

magazine L’Auto (www.letour.fr). The first edition of the race was in 1903 and was a brutal 

affair, based upon the six day events but using open France as the race course. Six stages of 

up to 293 miles each took the twenty-one finishers over 94 hours to complete amidst rampant 

cheating and accusations of barbarism by the riders about the difficult course. 2013 will mark 

the 100 year anniversary of Le Tour with twenty-one stages and a total distance of over 2,000 

miles. 

The Tour de France set the modern standard for road racing bicycles. Comfort and speed 

were prerequisites for both the competitors due to the long distances that needed to be 

covered as efficiently and quickly as possible. Derailleur gears (which allowed shifting into 

lower gear ratios for climbing and improved speeds compared with a fixed gear ratio) were in 

existence before their introduction to the 1937 Tour, but subsequently surged in popularity 

and common use as manufacturers such as Campagnolo and Simplex introduced models for 

consumer racing bicycles. Fixed gears are still used today in track cycling. 

The emergence of competitive cycle sport also began the natural process of performance 

optimisation. As found in many sports where equipment plays a pivotal role in success (such 

as rowing, sailing and archery), the evolution of equipment design runs concurrently with 

improvements in training and tactical knowledge. Sport science as an emerging discipline 

sought to understand the limitations and possibilities for optimising performance, and cycling 

exercise formed a useful tool to understand physiology.  

1.4 Cycling science    

Ergometer cycling in a laboratory is a simple mode of exercise with which to analyse 

muscular activity and other parameters such as kinematic or physiological data, compared 

with other forms of exercise such as running and swimming. Ergometer cycling also provides 
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an known measure of external work. For example, cycling has been used as the preferred 

mode of exercise to explore the effects of ergogenic aids (Hodgson et al., 2013;Laurence et 

al., 2012;Randell et al., 2013) or external motivation (Nakamura et al., 2010). As a common 

activity which most adults are accustomed to, cycling is a low risk activity for laboratory 

based research. Cycling is commonly used in research studies and experiments both 

investigating physiology in general but also effects specific to cycling, such as muscular 

activation (Connick & Li, 2013;Hug et al., 2013). 

Even though it is low risk, injury in cycling is often difficult to quantify but has been related 

to kinematic instability whilst pedalling (Silberman et al. 2005, Abt et al. 2007). The knee 

joint has the greatest range of motion during the pedal stroke, compared with other joints 

such as at the hip, ankle, elbow etc., and as torque is transferred through the knee as force is 

applied at the pedal, knee pain is a common cycling injury (Silberman et al. 2005; Bini, 

Hume & Croft 2011, Wanich et al. 2007; Clarsen, Krosshaug & Bahr 2010). By making 

positional adjustments on the bicycle, there is potential to reduce the amount of kinematic 

instability whilst cycling, especially at the knee but also in other areas of high torque such as 

the hip and the ankle. In order to make such adjustments however it is important to 

understand the muscles involved during cycling. 

1.5 Cycling muscles 

The major movers in the pedalling action are the quadricep group and knee extensors, in 

particular the vastus lateralis and medialis, providing 39% of the total positive mechanical 

work compared with 27% for the hip extensors (Ericson 1986). 
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Figure 2. Periods of muscular activation during the pedal cycle. (adapted from Hug & Dorel, 

2009). 

During the course of one crank revolution, peak torque occurs just after 90deg (Hug & Dorel, 

2009), following the activation of the vastus lateralis and vastus medialis around top dead 

centre (TDC) or the 12 o'clock position of the crank. As the crank moves past the point of 

peak torque and towards bottom dead centre (BDC), muscles of the lower leg and hamstring 

(e.g. the gastrocnemii, soleus, biceps femoris) serve to bring the pedal backwards and 

upwards before returning towards TDC. The upper and lower positions for the cranks are 

known as "dead centres" due to the low effective force applied in the direction of crank 

rotation. Previous research has found that metabolic indicators of cycling efficiency are 

related to mechanical indicators of force effectiveness (Leirdal & Ettema 2011),  where a 

decrease in the force effectiveness, namely the force applied perpendicular to the crankarm 
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results in a lower efficiency (Candotti et al., 2008). A cyclist should therefore strive to 

improve force effectiveness at the pedal in order to increase their efficiency, and therefore 

speed. This has been explored by examining cadence effects (Ettema et al., 2009) and also 

body position angles (Dorel et al., 2009). 

1.6 Contact points 

Over the years, the design of the racing bicycle and its associated components for the purpose 

of performance enhancement has led to developments to further improve comfort and 

increase speed. A popular area of study has been the height and angle of the saddle 

attachment for the rider, one of the three points of contact with the bicycle and an easily 

manipulated variable (Price & Donne, 1997;Sanderson & Amoroso, 2009). The combination 

of saddle height and seat tube angle fixes the location of the saddle in 2D space. Since the 

saddle cannot move laterally towards or away from the bicycle, these two parameters can be 

adjusted to provide the rider with the optimum saddle location for their individual 

anthropometrics. Regression equations have been calculated for the optimum saddle height 

based upon the characteristics of the rider, such as leg length, flexibility and inseam height 

(Bini et al., 2011;Peveler & Green, 2011). Saddle angle has been explored in a multisport 

situation such as duathlon or triathlon where a competitive athlete will run after cycling (Bisi 

et al., 2012;Silder et al., 2011), and so a method to optimise muscular activation and reduce 

fatigue for the subsequent running leg can be achieved by altering saddle angle relative to a 

vertical line of reference passing through the bottom bracket (most often increasing, to 

around 80deg). 

Changes in saddle location should always be combined with an analysis of the handlebar 

position. In normal road cycling, the handlebar extends equilaterally from the stem before 

curving away and downwards, allowing the cyclist multiple hand positions for comfort. 
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Different positions are adopted whilst climbing:"on the tops" - in the centre of the handlebar 

when seated, or "on the hoods" - at the outside edges of the handlebars when out of the 

saddle. Whilst descending the lowest position on the handlebar is often used - "on the drops", 

and riding on flat terrain will be a combination of the three. During timed competitive events 

and multisport events, racers will often use forward extensions to their handlebars along with 

arm rests in order to provide them with a fourth, more aerodynamic position.  The aero 

position changes the point of contact at the handlebars from the hands only to the elbows, 

forearm and hands. The reason for choosing an  aero position is to reduce the aerodynamic 

drag force acting upon the cyclist as they cycle, and can account for up to 80% of the total 

forces resisting forward motion, at speeds of 25-55kph  and beyond (Atkinson et al., 

2003;Olds, 2001. 

 

Figure 3. Positions adopted during cycling. 

This improvement in aerodynamics typically comes at the cost of reduced power output. 

Greater strain in the lumbar region, compression of the hip flexor muscles and restrictions to 

the intercostal breathing musculature can result in discomfort, changes in muscular activity 

patterns and decrease efficiency when cycling in the aero position (Ashe et al., 2003;Brown 

et al., 1996;Chapman et al., 2008;Dorel et al., 2009;Savelberg et al., 2003), but the loss in 
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power output is usually mitigated by the intended aerodynamic benefit (Grappe et al., 1998). 

The combination of saddle and handlebar position therefore govern the upper body angle of 

the cyclist, specifically the torso angle of the cyclist. A low handlebar position coupled with a 

steep seat tube angle can maintain the knee-hip-shoulder angle found in more upright riding 

and allow the cyclist to remain comfortable as well as aerodynamic and powerful.  

1.7 Pedals and gait 

The final point of contact for the cyclist are the pedals. The crank and pedal system was 

devised to make best use of the human gait action, in particular the musculature designed for 

knee and hip extension (another option that was developed and subsequently discarded was 

the  treadle – a stirrup based shaft drive – that mainly relied upon hip extension). Both 

walking and running require knee and hip extension to enable the transition between phases, 

and it is the force generated by this action that the crank and pedal system seeks to harness.  

The human gait cycle consists of two distinct phases: stance and swing. During the middle of 

the stance phase, when a single limb is loaded, full knee and hip extension is required to enter 

the swing phase, whereupon flexion occurs to bring the limb forward past the vertical ready 

to re-enter the stance phase.  
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Figure 4. The stance phase of the gait cycle. 

The muscles used in this part of the gait cycle are similar to the primary movers used in 

cycling previously described: the vastus lateralis, medialis and rectus femoris of the 

quadriceps group and the biceps femoris (figures adapted from Hug & Dorel, 2009;Ivanenko 

et al., 2004). 
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Figure 5. Muscular activity of the vastus medialis during cycling and walking 

 

Figure 6. Muscular activity of the vastus lateralis during cycling and walking 
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Not only are the muscles similar, as we can see in Figures 5 and 6 the timing of activation 

whilst cycling is very close to that of the activation profile whilst walking, with relative peak 

and lowest levels of activation occurring at similar locations in the gait and pedal cycles. 

 

Figure 7. Muscular activity of the rectus femoris during cycling and walking 
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Figure 8. Muscular activity of the tibialis anterior during cycling and walking 

 

Figure 9. Muscular activity of the biceps femoris during cycling and walking 
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Figure 10. Muscular activity of the gastrocnemius medialis during cycling and walking 

In contrast to the vasti laterali and mediali however, the rectus femoris, tibialis anterior, 

biceps femoris and gastrocnemius medialis do not share such a close pattern of activity 

between cycling and running (Figures 7-10). Instead, there appears to be a phase shift for 

some of the muscles: the onset of increased activation for the biceps femoris and 

gastrocnemius medialis occurs approximately 25% later during cycling compared with 

walking, whereas the tibialis anterior and rectus femoris activate 10-25% earlier, all sharing 

broadly similar profiles of activation but out of phase. The range of motion whilst walking is 

distinct from cycling, which is a constrained activity governed by the fixed and constant arc 

of the pedals and crankarm. Knee and hip joint angles are less acute during walking, and 

positive mechanical work to aid forward motion is still possible in cycling as the non 

dominant leg moves from 180deg through 270deg. This phase shift is likely to be due to 

contact time with the ground and the necessity to lift the foot off the ground at the end of 

contact.  
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Figure 11. A comparison between the stance phase of the gait cycle and the downstroke of 

the pedal cycle. 

The location of the pedal in 2D space along the sagittal plane follows an arc centred on the 

bottom bracket axle around which the crank arm rotates. Crank arm length is fixed and 

usually within a range of 165-180mm, causing the pedal to travel ~1.1m each rotation. Unlike 

the saddle and handlebars which are fixed in location, the pedal contact point is constantly 

moving along with the upper and lower legs. Previous studies have explored how changing 

the length of the crank arms might affect parameters such as maximal oxygen consumption, 

efficiency and aerobic/anaerobic power output (Barratt et al., 2011;Martin & Spirduso, 

2001;Too & Landwer, 2000), as well as how the rate of movement of the pedal, "cadence" 

can affect physiological parameters and muscular activation  (Candotti et al., 2009;Ettema et 
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al., 2008). Force is created by the legs and transferred to the pedal, and in turn through to the 

rear wheel via the chain which propels the bicycle forward. Optimisation of the force applied 

at the pedal is therefore critical to effective cycling. 

1.8 Step by step improvements 

Early pedals were simple flat platforms upon which the foot would rest. With flat pedals, 

force was only able to be directed downwards, causing the non-pushing leg to be redundant 

until the pedal had completed its cycle, but this quickly evolved into the use of clips and 

leather straps in order to both keep the foot centred on the pedal, and also allow the rider to 

"pull up" as the foot passed the bottom of the pedal stroke and returned towards the 12 

o'clock position. One technological advance that sought to achieve this was the creation of 

the clipless pedal, first invented in 1971 by Cinelli (Milan, Italy), with the M71 pedal. The 

use of the clipless pedal built upon the success of clips and straps by allowing no accidental 

movement of the foot, thereby increasing power transfer, as well as improving comfort as the 

leather strap tightened hard across the top of the shoe was removed.  

In spite of the availability of a clipless pedal in the early 1970s (Cinelli M-71, Italy), 

worldwide success was only reached in 1985 when Bernard Hinault, that year's winner of the 

Tour de France, used a prototype pedal by Look (Nevers, France) which allowed automatic 

release of the foot, similar to a ski binding. A plastic or metal shaped body, or “cleat” was 

attached to the underside of the shoe, with a spring mechanism housed within the pedal. The 

cleat engaged with the pedal with a small amount of downward force, and was released with 

a twisting motion of the foot which disengaged the spring mount. Cleats were originally 

nailed to the shoe, and now follow universal two, three hole or four hole mounting patterns 

using bolts and screws. Since the turn of the century the clipless pedal has become 

increasingly popular for the amateur racing and also casual cyclist, far more than a typical flat 
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pedal (Cruz & Bankoff, 2001). The cycling industry is awash with pedal manufacturers, 

models and makes, and dominated by a number of key players, notably Shimano (Osaka, 

Japan), Look (Nevers, France), Speedplay (San Diego, USA) and Time Sport International 

(Isère, France). Road cycling pedals and cleats come in an array of options, giving a choice 

of: 

- surface area (width and size of the pedal body and cleat) 

- rotational freedom around the Z axis of the pedal (known as "float") 

- distance from the pedal axis to the bottom of the cleat ("stack height") 

- total mass of cleat and pedal 

- material construction (carbon, alloy, titanium, thermoplastic etc.) which largely governs 

total mass 

- pedal axle length 

To the consumer, the main preferred characteristics are reduced weight and an increased 

surface area. A decrease the mass of the pedal, is only in the order of ~100g between high 

and low end models, approximately 0.01% of the total mass of a standard racing bicycle. An 

increase in the contact patch with the pedal is achieved by widening and lengthening the cleat 

within the constraints of the 2-4 bolt mounting points, and increasing the surface area of the 

top of the pedal. This serves to distribute the pressure more evenly on the sole of the foot. 

Smaller contact patches can lead to pressure pain, Morton’s neuroma, or a "hot spot" on the 

sole of the foot, commonly seen with mountain bike pedals and cleats that require a smaller 

cleat for optimal mud shedding (Davis et al., 2011; Silberman et al., 2005). 
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1.9 A step backwards 

Little research has been conducted on the bicycle pedal and its ideal construction (Cruz & 

Bankoff, 2011;Boyd et al., 1997;Gregersen et al., 2006;Gregor & Wheeler, 1994;Mornieux et 

al., 2008). The modern day market for pedals and their manufacturers has grown, but without 

a concurrent increase in knowledge about how to optimally position the foot. A lower stack 

height should allow the foot to follow a more circular path during the pedal stroke, and some 

models of pedal have sought to address this by aligning the foot with the pedal axis 

(Koninckx et al., 2008).  

This Vista Magic X pedal is similar to the non clipless Shimano DynaDrive pedal (Shimano, 

Japan), but the zero stack height comes at the expense of an increased pedal axle length. 

There has been a significant gap in the scientific research conducted into cycling -  namely 

that studies focus on adjustments to the bicycle in the sagittal plane only. Ergonomic changes 

along the frontal plane have not been previously explored. This is especially important at the 

pedal where the cleat and pedal interface can be altered along all three axes. To date there has 

been little to no research conducted into how positioning the foot laterally and manipulating 

the rotational freedom of the pedal can affect performance, comfort and/or injury prevention. 

Previous research on pedals is outdated (Boyd et al., 1997) and used pedals with large stack 

heights and non-modern systems of retaining the foot such as clips and straps rather than an 

automatic release. The range of movement was limited, in contrast to some modern pedals 

which can allow up to 20deg of rotational movement before disengaging (Speedplay, USA). 

Modern shoe construction is governed entirely by pedal and cleat system attachments and as 

such any new research should take into account these technological differences, which is 

lacking in the current literature. 
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1.10 Q Factor 

The position of the feet along the frontal plane even has a designated term in cycling, and is 

known as "tread", or more commonly "Q Factor". Q Factor is defined by the distance 

between the feet along the frontal plane, taken from the outside edge of each crankarm where 

the pedal is to be inserted and measured in mm.  

 

Figure 12. The measurement of Q Factor. 

A term originally devised by Grant Petersen of Bridgestone Bicycles (USA), "Q Factor" is 

short for "Quack Factor", given that a large distance between the feet, or a high Q Factor, will 

cause the cyclist to pedal as if they were a duck waddling! This rather tongue in cheek 

nomenclature has been readily adopted by the bicycle industry, and manufacturers will even 

stamp "Q Factor" directly onto components as well as providing information in datasheet 

specifications as to the Q Factor of a component. Some pedal manufacturers such as Time 

Sport International and Look claim that reduced Q Factor can be obtained by using different 
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cleats or changing pedal axle length - this is not strictly Q Factor but an additional 

governance of foot location.  

The use of Q Factor in order to improve the recruitment of cycling muscles and subsequently 

boosting force effectiveness at the pedal, could be a method of improving cycling 

performance. It is known that in weighted squat exercise, changing the foot placement 

laterally (stance width) can result in a change in muscular activation (Escamilla et al., 

2001;McCaw & Melrose 1999).  

Knowing that the quadriceps group is responsible for the majority of the force production 

during the downstroke of the pedal cycle, Q Factor adjustment could be made in order to 

optimise the recruitment of these muscles and therefore performance. A particularly high Q 

Factor for example (placing the feet further apart), may cause a lengthening of the vastus 

medialis and decreased force capability, whereas a Q Factor too low could cause a similar 

effect in the vastus lateralis, as well as creating tension at the stabilising tensor fasciae latae, 

and subsequently the knee. 

Even though most crank arm manufacturers provide information on Q Factor, and some pedal 

manufacturers allow greater lateral adjustment of the foot through pedal axle length and 

pedal/cleat design, there is no empirical data to inform the end user of the optimal Q Factor 

for their given application.  

Q Factor is set by the crankarms, and generally limited by bottom bracket width, tyre 

clearance with the bicycle and crankarm size. For this reason a typical Q Factor will differ 

between cycling disciplines rather than between rider sizes: in track cycling where less 

clearance is needed due to the single chainring mounted on the crank a lower Q Factor 

(~144mm) is found. Road cycling requires two or three chainrings to be mounted on the 

crank, and therefore more clearance and a longer bottom bracket axle increases the Q Factor 
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to around 150mm. Mountain biking and touring both use three chainrings as well as wider set 

chainstays and larger tyres, and for this reason the Q Factor on a mountain bicycle can 

approach 180mm for some makes of cranks. Given the attention that is sometimes paid to 

crankarm length by amateur and professional cyclists (typical range 165-180mm), the almost 

complete disregard for an optimisation in Q Factor over a much wider range (144-180mm) 

seems illogical.  

1.11 A performance enhancer 

As well as the optimisation of muscular recruitment, another possible benefit would be 

improved aerodynamics - as mentioned previously aerodynamic drag is the largest resistive 

force acting on a cyclist, and especially in a timed event such as the bike leg of a multisport 

race, or an individual or team time trial on the road or track, a narrower Q Factor could 

potentially improve aerodynamics by reducing the frontal area of the cyclist.  

In 1996, for the Atlanta Olympics, extra funding was given to the American cycling team in 

order to improve their chances to win medals at a home Games (Blangger 1996). Cycling was 

targeted (especially track cycling) due to the largely predictable nature of the events, where a 

reduction in aerodynamic drag of the bicycle and rider would result in faster times and 

greater medal potential, but requiring investment into research and engineering. A group of 

engineers, working on what was dubbed "Project '96", used US Air Force wind tunnel 

facilities in order to optimise the shape of the bicycle and the airflow over the bicycle and 

rider (Parker 1994). One area that was explored was the effect of varying the distance of the 

riders legs to the bicycle frame, which would be the result of a narrower Q Factor. 

Aerodynamics in this situation were improved as legs were moved closer to the frame (up to 

1 inch away from the bicycle). A narrow bicycle itself could also be made more aerodynamic 

as a reduction in bottom bracket shell width, required to lower Q Factor, in turn reduces the 
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frontal area of the bicycle and therefore decreases aerodynamic drag. Trek found that their 

custom narrow bicycle was more aerodynamic in the wind tunnel than the standard version 

(Coyle, 2005). 

1.12 Armstrong's secrets 

Within professional cycle sport, Q Factor has only fairly recently been explored as a potential 

performance enhancer. In the early 2000s at the Tour de France, always a hotbed for cycling 

innovation, the American cyclist Lance Armstrong sought to emulate the exceptional time 

trialling ability of his rival Jan Ullrich from Germany (Armstrong 2004), who possessed a 

custom built bicycle with a narrow Q Factor. Constructed by Andy Walser, a Swiss bicycle 

manufacturer with a keen interest in biomechanics (www.walser-cycles.ch), Ullrich's bicycle 

was built with a special narrow bottom bracket shell and reduced clearance for the rear wheel. 

A custom bottom bracket axle and crankarms allowed for the normal double chainring but 

with a highly reduced Q Factor of <130mm. Armstrong instructed his bicycle manufacturer 

(Trek, USA) to first obtain a Walser bicycle (purchased individually by an employee of the 

company to avoid suspicion!) and then copy and refine the design for his own personal use. 

The engineers at Trek were able to reduce the Q Factor to approximately ~128mm again 

using custom components, and Armstrong tested the new bicycle in a short stage race 

competition and a training camp in Lanzarote (Coyle 2005). Unfortunately, Armstrong 

merely chose to reduce his Q Factor to match that of Ullrich's, a taller, heavier rider who used 

a lower cadence compared with the fast pedalling, smaller Armstrong. Armstrong did not 

prefer this lower Q Factor, and felt that his power output over a long distance was affected, 

albeit without conducting any rigorous testing. The narrow bicycle was shelved, with a 

reported investment of nearly $250,000 (Coyle, 2005) and instead given to a team mate of 

Armstrong's, Viatcheslav Ekimov , who went on to use it to win the gold medal at the 2004 

Athens Olympics in the individual road time trial. 
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1.13 Q Factor to win 

Other cyclists apart from Armstrong and Ullrich (who was a Tour de France and Olympic 

champion) have used custom narrow bicycles at the highest level of cycle sport in an attempt 

to improve their performance: former world time trial champion Hanka Kupfernagel, former 

Olympic and world champion Nicole Cooke, Commonwealth Games medallist and Tour de 

France points jersey winner Baden Cooke, Olympic medallist and American champion Levi 

Leipheimer, world medallist and German champion Michael Rich, along with other 

professional and also amateur cyclists. Most riders of narrow bicycles (such as Armstrong 

and Ullrich) were using <130mm Q Factors, which was preferred by Ullrich but not by 

Armstrong.  Conversely, Armstrong's teammate Viatcheslav Ekimov found the <130mm Q 

Factor much more comfortable and rode the narrow Trek bicycle until his retirement in 2006. 

It is highly likely that the optimal Q Factor, like crankarm length, handlebar and saddle 

position is an individual variable that should be adjusted to suit the cyclist. Some successful 

cyclists have used a low Q Factor to improve their performance, however there is also likely 

to be a limit on how narrow the feet can be placed before performance decreases. 

1.14 From cycling to walking 

Cycling occurs within a relatively fixed predetermined space. Walking is a movement with 

free range of motion, and altering step width whilst walking has been found to change the 

oxygen cost (Donelan et al., 2001) and therefore efficiency, of the movement.. By increasing 

the step width beyond that of self selected, more oxygen is consumed and the action becomes 

less efficient. During cycling, the cyclist has no way of altering their Q Factor, and cannot 

explore their degrees of freedom to ensure that they are pedalling efficiently.  
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Figure 13. Oxygen cost at a reduced step width (from Donelan et al., 2001). 

The self selected and most economical step width whilst walking is 100-130mm (Donelan et 

al., 2001), which is lower than typical Q Factors found on road and mountain bicycles 

(150mm+). It is possible that by reducing the Q Factor on a bicycle to that approaching this 

lower width, the oxygen cost of cycling can be decreased as major cycling muscles as 

described above could be recruited and activated in a manner even more similar to walking 

than a typical cycling activation profile. 

It thus remains to be explored how Q Factor and foot positioning can be optimised on the 

bicycle to provide improved efficiency and kinematics. It should always be borne in mind 

that although cycling is a discrete activity, it found its genesis in the action of walking, and it 

is by making use of the body's evolution to walk and run that we can find our optimal 

position. 
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1.15 Aims 

The manipulation of Q Factor has the potential to provide greater efficiency and a recruitment 

pattern of muscular activation that is closer to that of walking. In this thesis I aim to explore 

how altering Q Factor and foot location whilst cycling can affect muscular activation, 

kinematics and mechanical efficiency during cycling. 

The effect of manipulating Q Factor upon gross mechanical efficiency, muscular activation 

and time trial performance will be analysed, in order to understand whether lower Q Factors 

that approach those of step width during gait improve performance and muscular recruitment.  

Then self selection of foot positioning will be explored and how it affects these physiological 

markers, and the relationship with kinematic instability whilst cycling. 

1.16 Methodological approaches 

In order to explore gross mechanical efficiency, muscular activation, kinematics and 

performance variables a range of techniques must be used. 

Measurements of gross mechanical efficiency (GME) are conducted using expired gas from 

an exercising individual. GME is distinct from delta efficiency (DE) as it represents the entire 

result of all metabolic processes and the relationship to external work, rather than DE which 

is an incremental ratio measure (Ettema & Loras, 2011; Castronovo et al., 2013). DE has 

been shown to be more variable than GME (Moseley & Jeukendrup, 2001; Moseley et al., 

2004) and analysis of GME requires only a single bout of exercise (Lucia et al., 2004), 

compared with the DE which requires multiple bouts of exercise and the slope of the 

regression line taken (Francescato et al., 1995), allowing for efficient use of the method in the 

laboratory. GME has also been shown to be relatively immune to circadian rhythm effects 

(Noordhof et al., 2010). Nevertheless, in order to achieve a high level of precision and 
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repeatability, great care must be taken when performing gas analysis for efficiency 

calculations, such as the careful calibration of equipment and the use of Douglas bags instead 

of online gas systems (Hopker et al., 2011), as well as calibrated and recognised devices for 

measuring external work whilst cycling, such as a Monark ergometer, SRM cranks or hub 

based Powertap power meter (Bertucci et al., 2005; Paton & Hopkins 2001; Peiffer & Losco 

2011). It is vital that the work performed and pedalling cadence utilised for the purpose of 

evaluating GME should be submaximal and steady state, which serves both to allow correct 

measurement of GME and to reduce fatigue effects. Ensuring that respiratory exchange ratio 

(RER) remains below 1.0 (and excluding any data where RER increases above 1.0) will 

therefore further aid the precision of the measurement (Hopker et al., 2011). 

Muscular activation can be recorded either through surface electromyography (sEMG), where 

electrodes are placed upon the skin to detect electrical activity of the muscle below it, or 

through wire inserts into the muscle itself (Hug & Dorel, 2009; Raez et al., 2006). For 

volunteer subjects performing exercise, surface EMG is many times more preferable and 

efficient for use in research. In order to isolate the specific muscles to be analysed, guidelines 

are available as to best sensor placement practice, focusing on the main body of the muscle to 

minimise the recording of activity from nearby muscles (Hermens et al., 2000). Raw signal 

data must be processed before use, and appropriate techniques for normalisation and root 

mean square (RMS) time periods (eg. <50ms for cycling activity) should be used. Some 

research has used a maximal voluntary contraction (MVC) of a muscle for normalisation 

whilst cycling, however this procedure can provide significant error and variability, and 

instead a dynamic method is preferable (Albertus-Kajee et al., 2010; Hug & Dorel, 2009). 

Kinematic measurements can be conducted either through video recording (Bailey et al., 

2003; Lage et al., 1995; Neptune & Hull 1999) or infrared analysis such as a Vicon system 

(Besier et al., 2003; O’Neill et al., 2011; Shan, 2008). A multi-camera (>3) infrared system 
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allows for the placement of markers in locations that may not be seen by a 2 camera high 

speed video system, and the integration of many infra red cameras (ie. >10) is more practical 

for data analysis than multiple high speed video systems. Best practice will involve the use of 

photographs and marked areas on repeat trials to ensure consistent marker placement, and 

reduce any additional error alongside that experienced by soft tissue artifacts (Leardini et al., 

2005) 

1.17 References 

Abt, J.P., Smoliga, J.M., Brick, M.J., Jolly, J.T., Lephart, S.M., Fu, F.H. 2007. Relationship 

between cycling mechanics and core stability. Journal of Strength and Conditioning Research 

21 (4), 1300-1304 

Albertus-Kajee, Y., Tucker, R., Derman, W., Lambert, M., 2010. Alternative methods of 

normalising EMG during cycling. Journal of Electromyography and Kinesiology 20 (6), 

1036-1043 

Armstrong, L., Jenkins, S., 2004. Every Second Counts. Yellow Jersey Press 

Ashe, M.C., Scroop, G.C., Frisken, P.I., Amery, C.A., Wilkins, M.A., Khan, K.M., 2003. 

Body position affects performance in untrained cyclists. British Journal of Sports Medicine 

37(5):441-444 

Atkinson, G., Davison, R., Jeukendrup, A., Passfield, L., 2003. Science and cycling: current 

knowledge and future directions for research. Journal of Sports Sciences 21(9):767-787 

Bailey, M.P., Maillardet, F.J., Messenger, N., 2003. Kinematics of cycling in relation to 

anterior knee pain and patellar tendinitis. Journal of Sports Sciences 21(8):649-657 

Barratt, P.R., Korff, T., Elmer, S.J., Martin, J.C., 2011. Effect of crank length on joint-

specific power during maximal cycling. Medicine and Science in Sports and Exercise 43 (9), 

1689-1697 

Berto, F., 2004. The Dancing Chain: History and Development of the Derailleur Bicycle (2nd 

ed). Van der Plas Publications 



	
  

28	
  
	
  

Bertucci W, Duc S, Villerius V., Pernin, J.N., Grappe, F. 2005. Validity and Reliability of the 

PowerTap Mobile Cycling Powermeter when Compared with the SRM Device. International 

Journal of Sports Medicine 26(10):868-873 

Besier, T.F., Sturnieks, D.L., Alderson, J.A., Lloyd, D.G., 2003. Repeatability of gait data 

using a functional hip joint centre and a mean helical knee axis. Journal of Biomechanics 

36:1159-1168 

Bini, R., Hume, P.A., Croft,  J.L., 2011. Effects of Bicycle Saddle Height on Knee Injury 

Risk and Cycling Performance. Sports Medicine 41 (6): 463-476 

Bisi, M.C., Ceccarelli, M., Riva, F., Stagni, R., 2012. Biomechanical and metabolic responses 

to seat-tube angle variation during cycling in tri-athletes. Journal of Electromyography and 

Kinesiology 22(6):845-851 

Blangger, T., 1996. Wheels of Fortune? Developers Hope Superbike II Gives US Team A 

Cycling Edge. The Morning Call, July 18 

Boyd, T. F., Neptune, R. R., Hull, M. L., 1997. Pedal and knee loads using a multi-degree-of-

freedom pedal platform in cycling. Journal of Biomechanics, 30(5), 505-511 

Brown, D.A., Kautz, S.A., Dairaghi, C.A., 1996. Muscle activity patterns altered during 

pedaling at different body orientations. Journal of Biomechanics 29(10):1349-1356 

Candotti, C.T., Loss, J.F., Bagatini, D., Soares, D.P., da Rocha, E.K., de Oliviera, A.R., 

Guimaraes, A.C.S., 2008. Cocontraction and economy of triathletes and cyclists at different 

cadences during cycling motion. Journal of Electromyography and Kinesiology 19:915-921 

Capelli, C., Schena, F., Zamparo, P., Monte, A.D., Faina, M., di Prampero, P.E., 1998. 

Energetics of best performances in track cycling 30(4):614-624 

Castronovo, A.M., Conforto, S., Schmid, M., Bibbo, D., D’Alessio, T., 2013. How to assess 

performance in cycling: the multivariate nature of influencing factors and related indicators. 

Frontiers in Physiology 4(116), 1-10 

Chapman, A. R., Vicenzino, B., Blanch, P., Knox, J. J., Dowlan, S., Hodges, P. W., 2008a. 

The influence of body position on leg kinematics and muscle recruitment during cycling. 

Journal of Science and Medicine in Sport 11 (6), 519-526 

 



	
  

29	
  
	
  

Clarsen, B., Krosshaug, T., Bahr, R., 2010. Overuse injuries in professional road cyclists. 

American Journal of Sports Medicine 38 (12), 2494-2501. 

Connick, M.J., Li, F-X., 2013. The impact of altered task mechanics on timing and duration 

of eccentric bi-articular muscle contractions during cycling. Journal of Electromyography and 

Kinesiology 23(1):223-229 

Coyle, E.F., Sidossis, L.S., Horowitz, J.F., Beltz, J.D., 1992. Cycling efficiency is related to 

the percentage of type I muscle fibers. Medicine and Science in Sports and Exercise 24,782-

788 

Coyle, D., 2005. Lance Armstrong's War: One Man's Battle Against Fate, Fame, Love, 

Death, Scandal and a Few Other Rivals on the Road to the Tour de France. Harper 

Cruz, C.F., Bankoff, A.D., 2001. Electromyography in cycling: difference between clipless 

pedal and toe clip pedal. Electromyography and Clinical Neurophysiology 41(4),247-252 

Cycling Embassy of Denmark, 2013. Facts about Cycling in Denmark. http://www.cycling-

embassy.dk/facts-about-cycling-in-denmark/statistics/ 

Davies, C., 1980. Effect of air resistance on the metabolic cost and performance of cycling. 

European Journal of Applied Physiology and Occupational Physiology 45(2-3),245-254 

Davis, A., Pemberton, T., Ghosh, S., Maffulli, N., Padhiar, N., 2011. Plantar pressure of 

clipless and toe-clipped pedals in cyclists – A pilot study. Muscles, Ligaments and Tendons 

Journal 1(1), 20-24 

Department for Transport (UK), 2012.Walking and Cycling Statistics. 

https://www.gov.uk/government/organisations/department-for-transport/series/walking-and-

cycling-statistics 

Donelan, J. M., Kram, R., Kuo, A. D., 2001. Mechanical and metabolic determinants of the 

preferred step width in human walking. Proceedings of the Royal Society of Biological 

Sciences 268, 1985-1992 

Dorel, S., Couturier, A., Hug, F., 2009. Influence of different racing positions on mechanical 

and electromyographic patterns during pedalling. Scandinavian Journal of Medicine and 

Science in Sports. 19, 44-54 



	
  

30	
  
	
  

Ericson, M., 1986. On the biomechanics of cycling. A study of joint and muscle load during 

exercise on the bicycle ergometer. Scandinavian Journal of Rehabilitation Medicine 16, 1-43 

Escamilla, R. F., Fleisig, G. S., Lowry, T. M., Barrentine, S. W., Andrews, J. R., 2001. A 

three-dimensional biomechanical analysis of the squat during varying stance widths. 

Medicine & Science in Sports and Exercise 33 (6), 984-998 

Ettema, G., Loras, H., Leirdal, S., 2009. The effects of cycling cadence on the phases of joint 

power, crank power, force and force effectiveness. Journal of Electromyography and 

Kinesiology 19(2):94-101 

Ettema, G., Loras, H., 2009. Efficiency in cycling: a review. European Journal of Applied 

Physiology 106(1):1-14 

Francescato, M.P., Girardis, M., di Prampero, P.E., 1995. Oxygen cost of internal work 

during cycling. European Journal of Applied Physiology and Occupational Physiology 72 (1-

2):51-57 

Goosey-Tolfrey, V.L., Alfano, H., Fowler, N., 2008. The influence of crank length and 

cadence on mechanical efficiency in hand cycling. European Journal of Applied Physiology 

102(2):189-194 

Grappe, F., Candau, R., Busso, T., Rouillon, J. D., 1998. Effect of Cycling Position on 

Ventilatory and Metabolic Variables. International Journal of Sports Medicine 19 (5), 336-

341 

Gregersen, C.S., Hull, M.L., Hakansson, N.A., 2006. How changing the inversion/eversion 

foot angle affects the nondriving intersegmental knee moments and the relative activation of 

the vastii muscles in cycling. Journal of Biomechanical Engineering 128(3):391-398 

Gregor, R.J., Wheeler, J.B., 1994. Biomechanical factors associated with shoe/pedal 

interfaces. Implications for injury. Sports Medicine 17(2):117-131 

Herlihy, D.V., 2004. Bicycle: The History. Yale University Press 

Hermens, H.J., Freriks, B., Disselhorst-Klug, C., Rau, G., 2000. Development of 

recommendations for SEMG sensors and sensor placement procedures. Journal of 

Electromyography and Kinesiology 10(5):361-374 



	
  

31	
  
	
  

Hodgson, A.B., Randell, R.K., Jeukendrup, A.E., 2013. The metabolic and performance 

effects of caffein compared to coffee during endurance exercise. PLoS One 8(4):e59561 

Hopker, J., Jobson, S. A., Gregson, H., Coleman, D., Passfield, L., 2011. The Reliability of 

Cycling Gross Efficiency Using the Douglas Bag Method. Medicine and Science in Sports 

and Exercise, July (epub) 

Hug, F., Dorel, S., 2009. Electromyographic analysis of pedaling: A review. Journal of 

Electromyography and Kinesiology 19 (2), 182-198. 

Hug, F., Boumier, F., Dorel, S., 2013. Altered muscle coordination when pedaling with 

independent cranks. Frontiers in physiology 28(4):232 

Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F., 2004. Five basic muscle activation patterns 

account for muscle activity during human locomotion. The Journal of Physiology 556(1):267-

282 

Jeukendrup, A. E., Craig, N. P., Hawley, J. A., 2000. The Bioenergetics of World Class 

Cycling. Journal of Science and Medicine in Sport 3 (4), 414-433 

Koninckx, E., van Leemputte, M., Hespel, P., 2008. Effect of a novel pedal design on 

maximal power output and mechanical efficiency in well-trained cyclists. Journal of Sports 

Sciences 26 (10):1015-1023 

Lage, K.J., White, S.C., Yack, H.J., 1995. The effects of unilateral knee immobilization on 

lower extremity gait mechanics. Medicine and Science in Sport and Exercise 27(1):8-14 

Laurence, G., Wallman, K., Guelfi, K., 2012. Effects of caffeine on time trial performance in 

sedentary men. Journal of Sports Sciences 30(12):1235-1240 

Leardini, A., Chiari, L., Della Croce, U., Cappozzo, A., 2005. Human movement analysis 

using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait & 

Posture 21 (2), 212-215 

Leirdal, S., Ettema, G., 2011. The relationship between cadence, pedaling technique and 

gross efficiency in cycling. European Journal of Applied Physiology 111 (12), 2885-2893 



	
  

32	
  
	
  

Lucía, A., San Juan, A., Montilla, M., Canete, S., Santalla, A., Earnest, C., Perez, M., 2004. 

In Professional Road Cyclists, Low Pedaling Cadences Are Less Efficient. Medicine and 

Science in Sports and Exercise 36 (6), 1048-1054 

Kram, R., Taylor, C.R., 1990. Energetics of running: a new perspective. Nature 346:265-267 

MacDougall, J.D., Hughson, R., Sutton, J.R., Moroz, J.R., 1979. The energy cost of cross-

country skiing among elite competitors. Medicine and Science in Sports 11(3):270-273 

Margaria, R., Cerretelli, P., Aghemo, P., Sassi, G., 1963. Energy cost of running. Journal of 

Applied Physiology 18(2):367-370 

Martin, J. C., Spirduso, W. W., 2001. Determinants of maximal cycling power: crank length, 

pedaling rate and pedal speed. European Journal of Applied Physiology 84 (5), 413-418 

McCaw, S. T., Melrose, D. R., 1999. Stance width and bar load effects on leg muscle activity 

during the parallel squat. Medicine and Science in Sports and Exercise 31 (3), 428-436 

Mornieux, G., Stapelfeldt, B., Gollhofer, A., Belli, A., 2008. Effects of pedal type and pull-up 

action during cycling. International Journal of Sports Medicine 29(10):817-822 

Moseley, L., Jeukendrup, A., 2001. The reliability of cycling efficiency. Medicine and 

Science in Sports and Exercise 33(4):621-627 

Moseley, L., Achten, J., Martin, J.C., Jeukendrup, A., 2004. No differences in cycling 

efficiency between world-class and recreational cyclists. International Journal of Sports 

Medicine 25(5):374-379 

Mukherjee, G., Samanta, A., 2001. Physiological response to the ambulatory performance of 

hand-rim and arm-crank propulsion systems. Journal of rehabilitation research and 

development. 38(4):391-399 

Nakamura, P.M., Pereira, G., Papini, C.B., Nakamura, F.Y., Kokubun, E., 2010. Effects of 

preferred and nonpreferred music on continuous cycling exercise performance. Perceptual 

and motor skills 110(1):257-264 

Neptune, R.R., Hull, M.L., 1999. A theoretical analysis of preferred pedalling rate selection 

in endurance cycling. Journal of Biomechanics 32:409-415 



	
  

33	
  
	
  

Noordhof, D.A., de Koning, J.J., van Erp, T., van Keimpema, B., de Ridder, D., Otter, R., 

Foster, C., 2010. The between and within day variation in gross efficiency. European Journal 

of Applied Physiology 109(6):1209-1218 

Olds, T., 2001. Modelling human locomotion: applications to cycling. Sports Medicine 

31(7):497-509 

O’Neill, B.C., Graham, K., Moresi, M., Perry, P., Kuah, D., 2011. Custom formed orthoses in 

cycling. Journal of Science and Medicine in Sport 14(6):529-534 

Parker, B.A., 1994. A new drag measurement system for wind tunnel testing of the racing 

bicycle and rider to determine a low drag configuration. Thesis - Faculty of the School of 

Engineering of the Air Force Institute of Technology Air University. 

Paton, C.D., Hopkins, W.G., 2001. Tests of cycling performance. Sports Medicine 31(7):489-

496 

Peiffer, J.J., Losco, B., 2011. Reliability/Validity of the Fortius Trainer. International Journal 

of Sports Medicine. 32(5):353-356 

Peveler, W.W., Green, J.M., 2011. Effects of saddle height on economy and anaerobic power 

in well-trained cyclists. Journal of Strength and Conditioning Research 25(3):629-633 

Price, D., Donne, B., 1997. Effect of variation in seat tube angle at different seat heights on 

submaximal cycling performance in man. Journal of Sports Sciences 15, 395-402. 

Pugh, L., 1974. The relation of oxygen intake and speed in competition cycling and 

comparative observations on the bicycle ergometer. The Journal of Physiology 241, 795-808 

Raez, M.B.I., Hussain, M.S., Mohd-Yasin, F., 2006. Techniques of EMG signal analysis: 

detection, processing, classification and applications. Biological Proceedings Online 8:11-35 

Randell, R.K., Hodgson, A.B., Lotito, S.B., Jacobs, D.M., Boon, N., Mela, D.J., Jeukendrup, 

A.E., 2013. No effect of 1 or 7 d of green tea extract ingestion on fat oxidation during 

exercise. Medicine and Science in Sports and Exercise 45(5):883-891. 

Saibene, F., Cortili, G., Roi, G., Colombini, A., 1989. The energy cost of level cross-country 

skiing and the effect of the friction of the ski. European Journal of Applied Physiology and 

Occupational Physiology 58(7):791-795 



	
  

34	
  
	
  

Sanderson, D. J., Amoroso, A. T., 2009. The influence of seat height on the mechanical 

function of the triceps surae muscles during steady-rate cycling. Journal of Electromyography 

and Kinesiology 19 (6), 465-471. 

Savelberg, H. H. C. M., Van de Port, I. G. L., Willems, P. J. B., 2003. Body configuration in 

cycling affects muscle recruitment and movement pattern. Journal of Applied Biomechanics 

19, 310-324 

Schmitt, D., 2003. Insights into the evolution of human bipedalism from experimental studies 

of humans and other primates. Journal of Experimental Biology 206(9):1437-48 

Shan, G., 2008. Biomechanical evaluation of bike power saver. Applied Ergonomics 

39(1):37-45 

Silberman, M.R., Webner, D., Collina, S., Shiple, B.J., 2005. Road bicycle fit. Clinical 

Journal of Sports Medicine 15 (4), 271-276 

Silder, A., Gleason, K., Thelen, D.G., 2011. Influence of bicycle seat tube angle and hand 

position on lower extremity kinematics and neuromuscular control: implications for triathlon 

running performance. Journal of Applied Biomechanics 27(4):297-305 

Too, D., Landwer, G. E., 2000. The effect of pedal crank arm length on joint angle and power 

production in upright cycle ergometry. Journal of Sports Sciences 18, 153-161 

Wanich, T., Hodgkins, C., Columbier, J.A., Muraski, E., Kennedy, J.G., 2007. Cycling 

injuries of the lower extremity. The Journal of the American Academy of Orthopaedic 

Surgeons 15 (2), 748-756. 

 

 

 

  



	
  

35	
  
	
  

2 THE EFFECT OF Q FACTOR ON GROSS MECHANICAL EFFICIENCY AND 

MUSCULAR ACTIVATION IN CYCLING 

This study was conducted in order to explore the effect of using two standard Q Factors (150 

and 180mm) alongside two narrower Q Factors (90 and 120mm) on both gross mechanical 

efficiency and muscular activation. The hypothesis was that narrower Q Factors would result 

in reduced activation of major cycling muscles and therefore improve (lower) oxygen 

consumption at a given submaximal workload. Trained cyclists were used for this study to 

ensure that the participants largely had a consistent pedalling action. For the measurement of 

gross mechanical efficiency, an important aspect in determining cycling performance, 

submaximal workloads were used. 

 

 

 

This chapter has been published in the Scandinavian Journal of Medicine and Science in 

Sports, on May 21, 2012: 

Disley, B.X., Li, F.-X., 2012. The effect of Q Factor on gross mechanical efficiency and 

muscular activation in cycling. Scandinavian Journal of Medicine and Science in Sports (May 

21) 
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2.1 Introduction 

Correct bicycle fitting is an essential aspect of cycling performance, injury prevention and 

comfort. The bicycle needs to be adjusted to the biomechanical characteristics of the rider in 

order to allow the rider to pedal efficiently. One aspect of bicycle fitting that has received no 

scientific attention, to date, is the “Q Factor” of a bicycle. 

Grant Petersen (Bridgestone Bicycles, USA) popularised the term Q Factor in the 1990s 

(previously known as “tread”) to describe the horizontal width between pedals, measured 

from the outside face of the crankarm where the pedal is inserted, to the corresponding 

outside face on the opposite crank when it is positioned in the same plane. Bicycle 

manufacturers use the term Q Factor in marketing documents and even stamped upon cranks 

themselves (e.g. Campagnolo, Italy). The Q Factor of a crankset, along with the position of 

the cleats attaching the shoes to the pedals, determines where the foot is laterally positioned 

throughout the pedal stroke.  

Currently no mass-produced bicycle has a Q Factor lower than 135mm:  a typical Q Factor 

ranges typically from ~150mm for a road bicycle, up to ~180mm for a mountain bicycle. 

Wider Q Factors for mountain bicycles are largely due to a triple chainring system at the 

bottom bracket, which limits minimum Q Factor due to clearance issues with the frame. 

Modern bottom bracket systems (such as BB30) permit narrower Q Factors <150 mm by 

housing the bearings within the frame, coupled with compatible crank systems. However, 

many bicycles would be able to accept Q Factors lower than 150 mm without limitations on 

clearance. Some Olympic and World Champion cyclists have successfully used custom 

bicycles equipped with a low Q-Factor (e.g. <130mm) in order to improve performance, 

winning Olympic and World Championship medals and time trial stages of the Tour de 
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France. One rationale for this strategy is that the recruitment and activation of major cycling 

muscles will be improved with a reduction in Q Factor as stance width approaches that of 

bipedal walking and therefore result in a more effective delivery of power to the bicycle.  

In spite of such attempts, to date, there have been no scientific studies performed upon the 

effect of narrowing the pedal stance of a bicycle on physiological and biomechanical 

variables.  

Previous research in cycling where componentry aspects of the bicycle have been altered, 

such as seat height and handlebar position, have been shown to negatively affect parameters 

such as oxygen cost (Grappe, 1998; Peveler, 2008), electromyography (EMG) activity 

(Mileva & Turner, 2003; Sanderson & Amoroso, 2009) and power output (Mandroukas, 

1990; Martin & Spirdoso, 2001; Peveler et al., 2007; Too & Landwer, 2000) in cyclists, when 

the position of the cyclist has been changed from the optimum. 

It is known that altering stance width has an effect upon joint moments and electromyography 

(EMG) activity during weighted squat exercise (Escamilla et al., 2001; McCaw & Melrose, 

1999; Paoli et al., 2009). However, no studies have explored the effect of changing stance 

width on a constant cyclical lower body movement involving relatively low forces. By 

bringing the lower limbs closer to the vertical (median) plane of the bicycle (ie. by reducing 

the Q Factor), it is possible that muscles will be recruited in a manner more similar to 

walking. Donelan et. al (2001) found that the metabolic cost of walking was decreased at 

lower step widths, compared with wider step widths where the shank angle will be decreased 

from vertical at the commencement of knee/hip extension in the gait cycle. 

The aim of this study was to determine whether narrowing the Q Factor had a beneficial 

effect upon efficiency and muscular activation.  
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It was hypothesized that narrowing Q Factor would result in a lower oxygen consumption (as 

found in human walking) for a given power output and therefore increased gross mechanical 

efficiency (GME), and that the level of muscular activation of major muscles involved in the 

cycling action would decrease as Q Factor is reduced.  
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2.2 Methods 

2.2.1 Subjects 

Twenty-four trained cyclists (11 male: VO2max 60.7 ± 6.8ml.kg.min-1, peak power output 

(PPO) 363 ± 44 W, mass 77.3 ± 6.1kg, height 182.7 ± 5.5cm, age 23.7 ± 6.0 yrs ; 13 female: 

VO2max 54.8 ± 4.1 ml.kg.min-1, PPO 262 ± 25 W, mass 63.4 ± 4.3, height 168.2 ± 4.8cm, age 

28.7 ± 10.9) volunteered for the study and gave informed consent for the study, which was 

approved by the University ethics committee. All subjects had a history of competitive 

cycling for >1yr, and were accustomed to maximal exercise. 

2.2.2 Setup 

All tests were performed upon a fully adjustable custom static bicycle, equipped with a 

torque sensor in the rear hub to measure power output (Powertap, Saris, USA), and mounted 

upon an electromagnetically braked turbo trainer to provide resistance (Tacx i-Magic, Tacx, 

The Netherlands) (Figure 15). The custom bicycle consisted of  two adjustable shafts 

allowing for manipulation of saddle and handlebar position, mounted upon an enclosed box 

section, housing a chainring and reed switches in order to determine crank position during the 

pedal cycle. A proprietary crank system that allowed manipulation of Q Factor was used, 

consisting of aluminium crank arms mounted upon removable bottom bracket axles of 

differing lengths, permitting a range of Q Factors from 90 mm upwards. 
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Figure 14. Static ergometer with enclosed chainring system. 

 

The Powertap was statically calibrated with weights of known mass to ensure its accuracy, 

and is comparable to the SRM system in its accuracy (Gardner et al., 2004). Saddle height 

and handlebar position were self selected and recorded and the subjects own pedals and 

clipless shoes used. Saddle height and handlebar position was kept constant throughout the 

experiment.  

Participants were instrumented with surface EMG sensors and data collected using Spike 

software (CED, United Kingdom). Sensor locations were set using Seniam guidelines for 

sensor placement (seniam.org), and mounted upon the vastus lateralis (VL), vastus medialis 
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(VM), tibialis anterior (TA) and gastrocnemius medialis (GM), as major muscles involved in 

the cycling action (Hug & Dorel, 2009). Skin was first shaved and then cleaned using an 

alcoholic solution, and conductive gel used in order to provide adequate contact between the 

electrodes and the skin. Heart rate (HR) was measured throughout using a chest belt 

transmitter (Saris, USA). 

2.2.3 Experimental protocol 

Subjects were required to visit the laboratory on two occasions. The first involved an 

incremental exercise test to exhaustion, in order to determine VO2max and PPO. Q Factor was 

set for this test at 150mm (Q150), similar to a standard road bicycle. Subjects starting 

pedalling at either 100 W (female) or 200 W (male), at a self selected cadence, and resistance 

was increased by 30 W every 3min, until the subject reached volitional exhaustion or cadence 

dropped below 60rpm. Expired gas was collected for 60sec at the end of each 3min stage 

using Douglas bags; VO2max was determined as the peak 60sec during the final stage and PPO 

was calculated as the highest 60sec average power during the final stage. Heart rate (HR) was 

measured throughout using a chest belt transmitter (Saris, USA). 

The second session was performed >48hr after the incremental test. After a warm up period 

of 5min at <150 W, a dynamic normalization trial of 3min at a power output corresponding to 

60% PPO in order to achieve a submaximal steady state for the purpose of evaluating GME, 

using Q150 and cadence of 60rpm was conducted, for the purpose of EMG analysis 

(Albertus-Kajee et al., 2010). The session consisted, for each Q Factor (Q90, Q120, Q150 and 

Q180), of 2 stages 5min in duration at 60% PPO and 90rpm. The order of experimental 

conditions was randomized across subjects and all stages were separated by 3min rest. 

Subjects were required to remain seated during the 5min stages and to keep their hands 

placed on the horizontal section of the handlebar.  
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2.2.4 Measurements and analysis 

120sec of expired gas, starting and finishing on an exhaled breath, was collected using 

Douglas bags at the end of each 5min submaximal stage, during the second session, for the 

purpose of determining GME. The need for careful calibration of equipment and handling of 

gas samples for accurate results has been previously described by Hopker et al. (2011). In 

order to minimize potential effects of diffusion, immediately prior to testing all Douglas bags 

were evacuated of their residual volume, and a dry gas meter employed to determine that no 

further residual gas could be extracted. All tests were performed using the same gas analyser 

(Servomex, UK), which was calibrated using three separate gas mixtures of known 

concentration, in order to determine linearity and accuracy. During analysis, the gas analyser 

was recalibrated after every four bags and 0.125 l of gas was removed from each. A ~120sec 

sampling period ensured that large gas volumes of <100 l were collected, in an effort to 

reduce the effect of minor but potentially contaminatory gases that may be present in 

evacuated Douglas bags, as well as any residual volume present, as these are the largest 

sources of error in Douglas bag measurement (Hopker et al., 2011). 

GME was calculated using the ratio of work accomplished in kcal.min-1 to energy expended 

in kcal.min-1 during the final 120sec of each stage following the method of Lucia et al. 

(2004), using the ratio of work accomplished to energy expended per minute. Work 

accomplished was calculated from the power output recorded by the Powertap converted to 

kcal.min-1. Energy expended in kcal.min-1 was calculated using the energy equivalent for 

VO2 based upon RER. GME was determined as the average of the two stages for each Q 

Factor. 

EMG activity was recorded at 1000Hz. Root mean square (RMS) activity for each muscle 

was calculated over a period of 30 complete pedal cycles over 20ms, during the third minute 

of each stage, and a second order low pass Butterworth filter applied with cutoff frequency of 
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10Hz. Level of EMG activity for each muscle was calculated as a percentage of the 

normalization period. In addition the peak RMS activity for each muscle during each 

individual pedal stroke was calculated, in order to provide timing of peak activation (PEAK) 

onset of activation (ON, >25% peak RMS) and offset of activation (OFF, <25% peak RMS) 

(Hug & Dorel, 2009).  

The angle of activation for PEAK, ON and OFF was determined using reed switches placed 

every 45o around the face of the crank synchronized with the EMG data, and constant 

velocity was assumed during each 45o segment. 

A repeated measures ANOVA was used in order to determine overall differences in GME, 

average RMS, PEAK, ON and OFF for each Q Factor. If the laws of sphericity were violated 

then the Greenhouse-Geisser correction was used. Where appropriate, post hoc testing was 

conducted using Fisher’s LSD. 

  



	
  

44	
  
	
  

2.3 Results 

 

Figure 15. Changes in gross mechanical efficiency GME with different Q  Factors. *GME for 
Q90 and Q120 is higher (19.38% and 19.38%) than Q150  and Q180 (19.09% and 19.05% P 

< 0.006). Error bars represent SE. 
 

Altering Q Factor on a bicycle results in a change in GME (F(1,2.699)=7.423, p<0.001, 

η2=0.244). Post hoc analysis revealed that Q90 (19.38±0.90%) was significantly higher than 

Q150 and Q180 (19.09±0.87% and 19.05±0.76%, p<.006), and that Q120 (19.38±0.97%) was 

significantly higher than Q150 and Q180 (p<.006). There was no significant difference 

between Q90 and Q120, nor was there a difference between Q150 and Q180. In addition, 

gender did not have an effect upon GME (F(1,2.645)=0.540, p=.635). All participants 

remained in steady state (RER <1.0) during the submaximal 60% PPO workload. 
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Figure 16. EMG activity of the vastus lateralis for a single participant 

as a function of crank angle. 

There were no significant differences found between Q Factors at timing of onset of muscular 

activation, peak activation and offset of activation (see Table 1.). In addition, the level of 

muscular activation, calculated as a percentage of activation during the normalization trial, 

was not significantly different between Q Factors. There was a trend towards a change in ON 

for the GM and VL (p=.076 and p=.064), but not PEAK or OFF for the GM and VL. Muscles 

were recruited at the same point during the pedal stroke and with the same level of activity, 

irrespective of the Q Factor used, even though a change was found in GME. 
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 Q90 Q120 Q150 Q180 Result of repeated 
measures ANOVA 

GM Onset (deg) 

GM Peak (deg) 

GM Offset (deg) 

117 ± 49 

141 ± 54 

172 ± 57 

124 ± 42 

150 ± 42 

184 ± 48 

110 ± 53 

140 ± 56 

175 ± 61 

105 ± 57 

131 ± 57 

162 ± 59 

F=2.732, p=.076 

F=1.433, p=.248 

F=1.686, p=.191 

TA Onset (deg) 

TA Peak (deg) 

TA Offset (deg) 

335 ± 37 

3 ± 36 

36 ± 37 

326 ± 44 

359 ± 44 

38 ± 52 

315 ± 32 

345 ± 30 

15 ± 37 

325 ± 55 

357 ± 51 

30 ± 63 

F=1.138, p=.338 

F=1.315, p=.281 

F=1.163, p=.333 

VM Onset (deg) 

VM Peak (deg) 

VM Offset (deg) 

19 ± 36 

54 ± 34 

83 ± 40 

26 ± 34 

56 ± 31 

86 ± 42 

9 ± 44 

43 ± 39 

73 ± 43 

31 ± 49 

57 ± 48 

88 ± 54 

F=1.483, p=.229 

F=0.958, p=.419 

F=0.959, p=.402 

VL Onset (deg) 

VL Peak (deg) 

VL Offset (deg) 

20 ± 32 

33 ± 56 

77 ± 42 

1 ± 21 

30 ± 25 

61 ± 26 

24 ± 30 

52 ± 32 

79 ± 41 

12 ± 37 

39 ± 36 

71 ± 40 

F=2.589, p=.064 

F=1.042, p=.367 

F=1.803, p=.159 

 

Table 1. Timing of muscular activation for the GM, TA, VM and VL at Q90, Q120, Q150 

and Q180 (Mean ± SD, n=20). 0deg represents a vertical crankarm/top dead centre. 

 Q90 Q120 Q150 Q180 Result of repeated 
measures ANOVA 

GM Level (%) 229 ± 105 252 ± 129 213 ± 91 219 ± 86 F=1.724, p=.189 

TA Level (%) 240 ± 137 217 ± 132 192 ± 57 230 ± 107 F=0.641, p=.549 

VM Level (%) 206 ± 133 161 ± 95 184 ± 116 180 ± 145 F=0.697, p=.559 

VL Level (%) 114 ± 29 116 ± 40 115 ± 20 108 ± 15 F=1.770 ,p=.177 

 

Table 2. Level of activation for the GM, TA, VM  and VL at Q90, Q120, Q150 and Q180 

(Mean ± SD, n=20) 
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2.4 Discussion 

2.4.1 Key findings 

The aim of this study was to explore the effect of Q Factor on cycling efficiency and 

muscular activation. A reduction in Q Factor resulted in an increase in GME. However, level 

and timing of muscular activation was unchanged in the GM, TA, VM and VL. 

2.4.2 Gross mechanical efficiency 

The data show that the narrower Q Factors Q90 and Q120 result in higher GME (~0.3%) than 

the wider Q Factors Q150 and Q180. This is the first time that Q Factor has been 

scientifically studied, and the data show that lateral positioning of the foot has an effect upon 

cycling efficiency (1.5-2% increase in power output) compared with previous research 

examining anterior/posterior positioning, when correctly examined (van Sickle & Hull, 2007; 

Mandroukas, 1990).  

An increase in GME of 0.3% represents an improvement in power output at submaximal 

levels of approximately 1.5-2.0%. Professional cycling stage races such as the Tour de France 

often require athletes to work submaximally for long periods of time (4-6hrs), as the effect of 

drafting in a large group reduces overall workload to submaximal aerobic intensity. In such a 

circumstance this reduction in energy turnover represents a worthwhile gain, given that the 

margin of victory for 3 week stage races is often in the region of a few minutes rather than 

hours (Jeukendrup et al., 2000).  In an event such as a long distance triathlon with a 180km 

non drafting bike section, athletes will be working close to the submaximal level studied 

(Laursen et. al 2002). At a constant power output of 180-280 W, this relates to approximately 

3-5w saved, or 2-3min over the course of the cycle. 

In this study athletes were exposed to different Q Factors but only for 5min periods. We have 

shown that an acute exposure to a reduction in Q Factor results in an increase in GME, 
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however there may be a training effect  that could allow an even greater increase in GME 

than that displayed here. 

 2.4.3 Level and timing of EMG activity 

There was no difference in either the level of activation or the timing of activation of the 

major cycling muscles measured (GM, TA, VM and VL). Given that the cyclists in the 

present study were all trained cyclists, the change in foot placement (a range of 45mm each 

side) may not have been sufficient to cause a change in muscular activation from their normal 

pedalling action. With an acute exposure to a different Q Factor, firing of the motor neurons 

may not have been sufficiently different for the level and timing of EMG activity to change. 

The instrumented ergometer allowed for analysis of timing of EMG activity during the pedal 

stroke, yet there were no significant differences between the Q Factors. There was, however, 

a trend towards a change in the angle of onset of activation for both GM and VL, and it is 

possible that this, along with other factors such as the behavior of other muscles than those 

analysed, may combine to produce the change in GME found.  

Few studies have related changes in EMG activity of the muscles to mechanical efficiency, 

often focusing purely on oxygen consumption and cycling economy (e.g. van Sickle & Hull, 

2007). It is possible that other muscles involved in the cycling action are responsible for the 

increase in GME at lower Q Factors, however as the increase in GME was small, the signal-

to-noise ratio inherent in the use of EMG may prevent the detection of slight changes in 

muscular activity in the muscles measured.  

During testing 23 of the 24 participants reported a dislike of Q180, and that the pedaling 

action felt “odd” or “uncomfortable”, preferring instead to pedal with Q90 or Q120. This 

non-localised discomfort implies a potential muscular recruitment discrepancy, but probably 

detrimental only for the wider Q Factor of 180mm. Future work could involve determining 
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levels of comfort and their effects over longer durations than those explored in the current 

study. Increasing the Q Factor above 180mm may result in detectable changes in EMG 

activity, but reducing the Q Factor below 90mm is impractical for bicycle manufacturers due 

to a mechanical limit in the minimum width of a bottom bracket and crank set. Further 

muscles involved in hip adduction and abduction of both legs could also be explored - due to 

restrictions in equipment capability, only four muscles of the right leg were analysed in this 

study.  

2.4.4 Mechanical considerations 

Further research is required to explore the force application at the pedal itself in order to fully 

determine the source of the increase in GME. By moving the pedals closer to the centerline of 

the bicycle, a more efficient transfer of force to the pedal, with less ineffective tangential 

force or medio-lateral component during the pedal stroke (Bini et al., 2013), would result in a 

higher measured power output for the same level of oxygen consumption, thereby increasing 

GME. If indeed there is no change in timing or level of activation of the major cycling 

muscles when Q Factor is manipulated, optimal force application could favor lower Q Factors 

during cycling. Future study should make use of instrumented pedals in order to determine 

whether this hypothesis is correct. 

2.4.5 Perspectives 

In the world of cycling and triathlon, technology is becoming more important for increases in 

performance. At submaximal intensity efficiency with lower Q Factors is increased, yet 

further study is required to determine the effect of manipulation on Q Factor during maximal 

aerobic and anaerobic intensity performance. Nevertheless, the improvement in cycling 

efficiency with a narrower Q Factor could be realized with the advancement of modern 

bicycle construction, along with the potential for further benefits (such as better 

aerodynamics or injury prevention).  
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3 SELF SELECTED FOOT POSITIONING IN CYCLING  

Having determined that narrower Q Factors are more efficient for submaximal workloads, 

this study was devised in order to explore how cyclists would self select their foot position 

(both in terms of float/pedal angles and also Q Factor) and how this related to optimal. A 

wider range of participants were used of both genders, from recreational cyclists to European 

Masters champions, to examine different pedalling actions from cyclists with different 

backgrounds.  Special pedals were constructed to increase the degrees of freedom and allow 

the participants to self select their own preferred position without constraint. 3D video 

analysis was used at a fixed workload to determine kinematic variations and effects, and 

anthropometric characteristics were recorded for the purpose of analysing individual 

responses to the increased degrees of freedom. 

 

This chapter has been submitted to the European Journal of Sports Sciences and is currently 

under review. 
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3.1 Introduction 

Correct fit upon a bicycle is essential for improved performance, comfort and injury 

prevention (Silberman, Webner, Collina, Shiple, 2005). Previous research has focused around 

the optimisation of body orientation whilst cycling, both in terms of power production and 

aerodynamic benefit (Chapman et al., 2008a; Dorel, Couturier & Hug, 2009; Heil, Derrick & 

Whittlesey, 1997; de Vey Mestdagh, 1998; Savelberg, Van de Port & Willems, 2003), and 

the use of adjustable characteristics of the bicycle, such as seat tube angle (Price & Donne, 

1997; Ricard, Hills-Meyer, Miller & Michael, 2006; Umberger, Scheuchenzuber & Manos, 

1998) and saddle height (Bini, Hume & Croft,  2011; Peveler, Pounders & Bishop, 2007; 

Peveler, 2008; Sanderson & Amoroso, 2009), to achieve changes in relative placement of the 

rider in respect to the crankarms. The joint loads at the knee are also an important factor 

during cycling, not only for maximising effective power production to the pedal, but also 

associated with the risk of injury (Ericson & Nisell, 1987; Gregersen & Hull, 2003; Ruby, 

Hull, Kirby & Jenkins, 1992).  

When analysing positioning on a bicycle, there are three points of contact to consider: the 

handlebars, saddle and pedals. Commercial bicycles allow for a large range of adjustment in 

terms of handlebar and saddle placement through the use of different sized frame sets and the 

attachment components (seatpost and stem). Conversely, however, there is a limited range of 

adjustment at the pedal, where only crankarm length (within a typical range of 165-180 mm) 

and a small amount of cleat adjustment can be made in order to position the foot. Cleats can 

be positioned to move the foot along the axle of the pedal towards and away from the crank 

(approximately 5 mm laterally per cleat), fore-aft on the pedal (5-7 mm range), to allow 

rotational freedom (release angle) and set the base angle of foot on the pedal. Orthotic inserts 

can also be used to alter the inversion/eversion of the foot. 
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Crank arm length within realistic ranges (145-170mm) (Martin & Spirdoso, 2001) and 

cleat/foot fore-aft positioning (Sickle & Hull, 1997; Vroemen, 2011) have been explored in 

the literature with equivocal effects, with no increase in maximal power output or 

improvement in economy. Inversion and eversion of the foot has also been explored before in 

combination with rotation of the foot (Wootten & Hull, 1992; Boyd, Neptune & Hull, 1997), 

but again with inconclusive results or in the form of case studies, limiting the conclusions that 

can be drawn. The construction of special pedals is required to analyse such variables. 

However instrumented pedals often increase stack height (Wootten & Hull, 1992; Boyd et al., 

1997), which causes the circular motion of the pedalling stroke to be shifted upwards, 

changing the pedalling action from the norm.  

It is known that lower Q Factors are more mechanically efficient (Disley & Li, 2011), and 

there is no biomechanical basis for 150 mm Q Factor to be optimal in terms of comfort or 

power production. In the field of motor control research, it is known that individuals are able 

to perceive affordances, in particular their optimal course of action during a task (e.g. 

Warren, 1984). What is unclear is whether cyclists, given free range of motion, will self 

select a Q Factor that is different from 150 mm. 

Commercial road pedals utilise a cleat system whereby a composite or metal cleat is attached 

to the shoe and is able to be locked into and released from the pedal. Early pedal systems 

allowed no transverse rotation at the foot, which was associated with increased risk of knee 

injury (Holmes, Pruitt & Whalen, 1994). Today, popular pedal and cleat systems allow a 

maximum of 5-10 degrees of rotation at the pedal body before release (Look Cycle 

International, France; Shimano Inc., Japan), with some systems allowing non-centering 

ranges that are higher than this (up to 20 degrees, Speedplay Inc., USA). However, to the 

authors knowledge, there is no published scientific data to show that these ranges are optimal, 

and previous research has utilised only commercial pedals with limited release angles (Boyd 



	
  

56	
  
	
  

et al., 1997). Similarly to self selection of Q Factor, it is currently unknown what maximum 

release angle, and base orientation of the cleat and foot to the pedal cyclists would choose 

given pedals that allow free range of motion. Joint loading and kinematic patterns have been 

explored whilst cycling, showing individual effects during the pedalling action (Gregersen & 

Hull, 2003;Chapman, Vicenzino, Blanch & Hodges, 2009). It is likely therefore that 

conventional cleat and pedal systems could present limitations to some cyclists due to 

individual variability during the pedalling stroke.  

More experienced cyclists maintain better coordination (i.e. less overall variability) than 

novice cyclists (Chapman, Vicenzino, Blanch & Hodges, 2008b), and variability during 

repeated action in sport is an indicator of motor control and coordination (Bartlett, Wheat & 

Robins, 2007). The knee is the most unconstrained joint that performs action during the 

seated pedal stroke – motion at the hip is limited within a relatively small area as the cyclist 

sits upon the saddle, and the ankle joint is similarly laterally constrained by the foot’s 

attachment to the pedal and the float available in the cleat. Therefore there is more freedom to 

move at the knee during the pedalling stroke, which results in knee variability being a good 

indicator of motor control and coordination during cycling. More experienced cyclists should 

have less variability than novice cyclists when extra degrees of freedom are involved, which 

could exacerbate any change in level of constraints (e.g. Q Factor and pedal angle). 

Based upon these previous data on kinematic variability, the aims of this study are to examine 

whether a) commercial cleat and pedal systems provide cyclists with sufficient range of 

motion during the pedal stroke, by using pedals that are freely able to move, and b) whether 

the self selected pedalling action is different for stable and unstable cyclists. 

It was hypothesised that: 1. The range of motion provided by commercial cleat systems 

(float) is smaller than what is exhibited by cyclists, due to individual variability in pedalling 
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kinematics. 2. Knee variability is likely to increase when given complete free range of motion 

at the pedal, due to the extra degrees of freedom causing increased instability during the pedal 

stroke, and this increase will be less in more experienced cyclists. 3. Given free range of 

motion, cyclists are likely to adopt a different Q Factor than the fixed standard of 150 mm, 

due to intra- individual differences in pedalling mechanics. 

 

 

3.2 Methods 

 3.2.1 Participants 

Twenty-nine cyclists (15 male, 14 female, mass 70.4 ± 10.6 kg, height 176.2 ± 9.8 cm, age 

23.3 ± 7.0 yrs) volunteered for the study and gave informed consent. All participants were 

accustomed to cycling exercise (>1 hr per week) and ranged from cycle commuters to 

triathlon and road cycling competitors . For the purpose of analysis, two groups of 12 

participants were selected based upon knee variability as explained below. The study was 

approved by the local ethics committee. 

 3.2.2 Ergometer setup 

Testing was performed upon a custom made narrow adjustable bicycle, permitting the use of 

narrower Q Factors (eg. 90mm), equipped with a torque sensor in the rear hub to measure 

power output (Powertap, Saris, USA), and mounted upon an electromagnetically braked turbo 

trainer to provide resistance (Tacx i-Magic, Tacx, The Netherlands). Custom ‘floating pedals’ 

were mounted upon the bicycle, which consisted of a 12 x 30 cm footplate equipped with 

retaining straps. A bushing was attached underneath the footplate and mounted upon an axle 

that projected from the crank, along with plastic sleeves either side of the pedal in order to 

either restrict or allow lateral movement of the pedal along the axle. During periods where the 
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pedal was allowed to move laterally, the plastic sleeves were removed, permitting a range of 

effective Q Factor (ie. pedal location relative to a virtual crank, as the crank itself was fixed) 

from 90 mm to 370 mm. The 360º rotation of the pedal in respect to the horizontal axle was 

permitted by the addition or removal of retaining screws attached to a plate of needle 

bearings underneath the footplate. 

 

Figure 17. Floating pedal setup. Lateral freedom along the pedal axle was permitted during 

the lateral and free conditions, and rotational freedom permitted during the rotation and free 

conditions. Foot angle is represented by angle α 

 

Saddle height was measured from the foot plate bed with the crank at the bottom of the pedal 

stroke (6 o’clock position) to top centre of the saddle. Due to the offset vertical seat tube, an 

inline measurement of the seat tube was not possible. Saddle height was set at 90% of greater 

trochanter height for all participants, representing typical recommendations  (Ferrer-Roca et 

al., 2012) and handlebar location was self selected. Participants were required to complete the 

testing protocol in bare feet with no shoes, secured on the footplate with retaining straps. No 
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shoes were used in order to minimize stack height. Key locations on the foot were marked 

using a washable pen in order to ensure that location on the pedal was kept constant between 

conditions. 

3.2.3 Infrared kinematic recording 

Seven reflective markers were placed on bony landmarks of the lower body: the superior 

anterior iliac crest, lateral femoral condyle, trochanteric fossa and lateral malleolus of each 

leg, and on the sacrum. In addition, markers were placed along the centerline of each pedal at 

the front (in front of the toe), rear (behind the heel) and also on the outside edge of the pedal, 

in line with the axle. Thirteen infrared cameras were used for the purpose of determining 

marker location, and data were collected at 100 Hz using Nexus software (Oxford Metrics 

Group, UK). A separate calibration was performed before each session, with an error limit of 

0.3mm (mean residual) according to manufacturer recommendations . If error was above this 

value then calibration was repeated. 

3.2.4 Experimental protocol 

Participants were required to visit the laboratory on one occasion. After arriving at the 

laboratory handlebar and saddle height were set according to the details above. There was an 

initial warm up period of 5 min at a self selected intensity of <150 W, where the participants 

were mounted upon the adjustable bicycle with the pedals in a fixed condition, allowing no 

rotational or lateral movement. During data collection, participants were required to pedal at 

90 rpm and 150 W for periods of 3 min, separated by 3 min of rest in order to minimize the 

effects of fatigue. 150 W was a comfortable and easily achievable power output for all of the 

participants analysed. Data were collected over a 30 sec period during the second minute of 

each 3 min trial. The participants were not informed of the period of data collection.  
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During exercise body position was standardised with the hands placed on top of the 

handlebars (“on the tops”), participants were instructed to look at a computer display showing 

cadence, mounted approximately 25 cm in front of the handlebars, and instructed not to look 

downwards at their feet.  

Four conditions were used twice each, in the following order to progressively introduce extra 

degrees of freedom whilst pedaling, allowing the acute effect of introducing instability into 

the pedal stroke to be examined: fixed (no rotation and no lateral movement), lateral (lateral 

movement permitted but no rotational movement), rotation  (rotational movement permitted 

but no lateral movement) and free (both rotational and lateral movement permitted). In 

between the lateral and rotation trials the feet were taken off the pedals in order to remove the 

rotational retaining screws, and replaced according to the landmarks marked on the feet. 

The Q Factor in the fixed condition was set at 150 mm. Due to construction of the bearing 

and bushing system there was a small amount of lateral play in the fixed condition  of ~1 mm 

either side of the pedal.  

3.2.5 Analysis 

Data were collected in 30 sec intervals representing 45 ± 1 pedal cycles. Raw data were 

exported and analysed at 100 Hz frequency. Q Factor was determined in mm by calculating 

the horizontal distance between the pedals using pedal markers, and averaged over the two 

trials for each condition. 

Knee variability is represented by the standard deviation of movement of the lateral femoral 

epicondyle (averaged between left and right sides), along the frontal plane in mm. 

Foot angle variability is represented by the standard deviation of the angle away from the 

sagittal plane at the foot (averaged over both feet), and mean foot angle is the average foot 
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location during the data sampling period. A positive angle indicates that the foot is positioned 

“toe in” towards the bicycle, with a negative angle being “toe out”.  

Mean maximum foot angle is the greatest foot angle (averaged over both feet) away from the 

sagittal plane during the data sampling period. 

3.2.6 Grouping 

Participants (n=29) were ranked in order of knee variability during the FREE condition. The 

12 subjects with lowest knee variability were grouped as stable (ST), and the 12 with highest 

knee variability were grouped as unstable (UST). The data for the remaining 5 participants 

was discarded. 

 3.2.7 Statistical Analysis 

All data for the two groups were analysed using PASW Statistics version 17 (IBM, USA). 

Results are presented as Mean ± SD. Two way repeated measures analysis of variance 

(ANOVA) was conducted to determine main effects with Bonferroni correction. If the laws 

of sphericity were violated then the Greenhouse-Geisser correction was used. α was set at 

0.05. 

 

3.3 Results 

Knee variability was lower in the ST group during the free condition compared with UST (ST 

= 12.8±1.7mm, UST = 23.9±4.7mm, F(1,1)=60.076, p=.001). There were 6 males and 6 

females in each group. There was no difference in age between groups (F(1,1)=1.614, 

p=.217), nor was there a difference in height (F(1,1)=0.001, p=.981) or body mass 
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(F(1,1)=0.005, p=.946). Weekly training hours were higher in ST than in UST (ST = 

8.8±4.0hrs, UST = 4.4±3.3hrs, F(1,1)=8.619, p=.008, η2=0.281) 

 

 
Group 

 
Age (yrs) 

 
Height (cm) 

 
Mass (kg) 

 
Training hours/week 

 
ST (n=12) 
 
Male (6) 
Female (6) 
 
 

 
25.1 ± 9.5 
 
21.3 ± 2.1 
28.8 ± 12.7 

 
175.8 ± 8.5 
 
181.5 ± 7.0 
170.2 ± 5.6 

 
71.4 ± 9.4 
 
77.1 ± 9.5 
65.8 ± 5.2 

 
8.8 ± 4.0* 
 
7.8 ± 4.2 
9.8 ± 3.9 

UST (n=12) 
 
Male (6) 
Female (6) 
 

21.4 ± 9.5 
 
22.8 ± 3.8 
20.0 ± 1.4 

175.8 ± 8.7 
 
180.8 ± 7.5 
170.7 ± 6.9 

71.1 ± 11.6 
 
75.3 ± 11.0 
66.9 ± 11.5 

4.4 ± 3.3* 
 
3.7 ± 3.5 
5.2 ± 3.2 
 

 

Table 3. Participant characteristics and grouping. ST=Stable, UST=Unstable. * p<.01 

There was no main effect of group on self selected Q Factor (SSQ) during the lateral 

condition between groups (F(1,1)=0.018, p=.894), however there was a small, but significant 

difference in SSQ during the free trial between groups (ST=137.3±16.8 mm, UST = 

152.6±18.9 mm, F(1,1)=4.343, p=.049, η2=0.165).  

Knee variability increased by ~2.5 mm in the free condition compared with the fixed 

condition for UST (t=2.411,p=.035). ST remained the same (t=.648, p=.532). 
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Group Knee variability Self selected Q Factor 

 
Fixed  
 

 
Free  
 

 
Lateral  

 
Free  

 
ST  
 

 
12.6 ± 2.4 

 
12.8 ± 1.7 

 
144.9 ± 21.4 

 
137.3 ± 16.8† 

UST  21.4 ± 4.7* 23.9 ± 4.7* 146.0  ± 18.2 152.6 ± 18.9† 

 

Table 4. Knee variability and self selected Q Factor. All values in mm. Knee variability 

increases in UST by ~2.5mm when moving from fixed to free conditions, whereas ST 

maintain knee stability as the extra degrees of freedom are introduced. * p=.035, † p=.049. 

 

There was no difference in mean foot angle between groups in the rotation (F(1,1)=0.307, 

p=.585) or free conditions (F(1,1)=0.731, p=.402). 

There was a significantly lower foot angle variability in ST compared with UST, in both the 

rotation (F(1,1)=4.297, p=.050, η2=0.163) and free conditions (ST=2.0 deg, UST=2.6 deg, 

F(1,1)=5.390, p=.030, η2=0.197). 

There was a lower maximum foot angle in ST during the rotation (ST=15.9 deg, UST=19.3 

deg, F(1,1)=5.175, p=.033, η2=0.190) and free conditions (ST=15.5 deg, UST=19.6 deg, 

F(1,1)=7.162, p=.014, η2=0.246) than UST. 
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Group 

 
Foot angle 
variability 
(rotation) 

 
Foot angle 
variability 
(free) 

 
Maximum foot 
angle 
(rotation) 

 
Maximum foot 
angle (free) 

 
ST  
 

 
2.0 ± 0.6 

 
2.0 ± 0.4 

 
15.9 ± 3.5 

 
15.5 ± 2.6 

UST  2.6  ± 0.7* 2.6 ± 0.7* 19.3 ± 3.9* 19.6 ± 4.6* 

 

Table 5. Foot angle variability and maximum foot angle between groups in the rotation and 

free conditions. All values in degrees. * significant difference between groups, p<.05. 

 

3.4 Discussion 

The aims of the study were to compare the range of motion permitted by standard clipless 

cycling  pedals with that of an unconstrained pedal, and whether this differed between stable 

and unstable cyclists. The Q Factor and the angle of rotation of the foot along the vertical 

axis, which have little to no exploration in previous study, were found to be different between 

stable and unstable cyclists. 

In this study stable cyclists were found to exhibit less variability at both the knee and the foot 

compared with unstable cyclists. The manipulation of degrees of freedom caused no change 

in the coordination of already stable cyclists, but resulted in changes of the movement pattern 

of unstable cyclists. 

The results partly support the hypothesis by showing that stable cyclists’ SSQ of ~137 mm in 

the free condition is lower than unstable cyclists (~153 mm, remarkably close to the standard 

150 mm found on a typical road bicycle), however this difference is only apparent when 

given complete free range of motion (both rotational and lateral freedom), rather than just 

lateral freedom. Therefore as more degrees of freedom are introduced into the pedalling 
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action, more coordinated cyclists choose a lower Q Factor that tends towards the more 

mechanically efficient Q Factors of < 150 mm (Disley & Li, 2011). In the present study, 

degrees of freedom were introduced progressively during the pedalling task, however future 

work could be conducted with randomized level of freedom and the effect upon pedalling 

kinematics. 

What is unclear from the data available is whether the unstable cyclists, who train for less 

hours, are more mechanically efficient at Q Factors closer to 150 mm, given their SSQ of 153 

mm. The choice of a ~16mm wider Q Factor for the unstable cyclists could be due to an 

inability to fully explore the degrees of freedom presented during the experiment, therefore 

only choosing a Q Factor which is similar to standard. Further study is required in order to 

determine whether mechanical efficiency is increased at SSQ, and this difference implies that 

coordination during cycling (in terms of knee and foot variability) may play a role in the 

determination of the optimal positioning for the individual cyclist.  

The maximum foot angle at the pedal is here shown to be greater than popular commercially 

available cleat systems in both groups. This angle is less (~16 deg) in stable cyclists 

compared with unstable (~19.5 deg), and is the same regardless of whether lateral freedom is 

present. This supports our second hypothesis that many commercial cleat systems provide a 

limitation for the cyclist by not allowing the foot to move freely during the pedal stroke. This 

could result in forces being transferred up through the knee as the foot is constrained at points 

of maximum rotation, higher than the release angle of the cleat, which could lead to 

patellofemoral injury if sufficient loads are present across the frontal plane (Schulthies, 

Francis, Fisher & Van De Graaff, 1995). Conversely, it could be argued that providing a limit 

of maximum rotation is advantageous for power production, as the direction of force 

application can be maintained within a stricter band, and the risk of injury is outweighed by 

the power production benefit. In this study 3-axis forces were not measured at the pedal, as 
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the bushing and needle bearing system that provided the range of adjustment required would 

make measuring force difficult. Having determined that the characteristics of the pedalling 

action are different from commercial systems, further study is required in order to explore the 

applied force and joint loading when rotational freedom is manipulated. The work of Boyd et 

al. (1997) explored rotational freedom and moments at the knee, however using a pedal 

system that provided limitations previously described. 

Coordination in cycling should be focused around the knee as the active joint with the 

greatest freedom to move during the pedal stroke, and is also the area greatest at risk of injury 

(Ericson & Nisell, 1987; Ruby et al., 1992; Elmer et al., 2011). The results supported the 

third hypothesis, that knee variability would increase with the introduction of extra degrees of 

freedom, with stable cyclists being able to manage this increase in freedom, and thus 

maintaining their coordination (Bernstein, 1967). Unstable cyclists exhibit a ~2.4 mm 

increase in knee variability when extra degrees of freedom are introduced. It is possible that 

unstable cyclists require more time to explore and subsequently exploit the additional degrees 

of freedom, whereas stable cyclists are able to manage the acute effect of allowing a change 

in range of motion.  

The difference in variability is mirrored in previous research examining variance in muscular 

recruitment patterns between novice and highly trained cyclists, which found that the more 

experienced cyclists exhibit less variability than novice (Chapman et al, 2008b). There is very 

little data on the differences in kinematics between trained and untrained cyclists (Bini & 

Diefenthaeler, 2009; Carpes et al. 2011), and although this study did not include a large 

population of elite cyclists, the finding that cyclists who are more stable train for more hours 

than unstable could indicate that training hours have an effect upon coordination. This 

influence upon coordination whilst cycling could be further explored in future study by using 

groups matched for training hours to examine how coordination may be affected, as well the 
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use of a relative workload intensity (eg. 60% of peak power output) rather than the fixed 150 

W used in the current experiment. 

A limitation of 3D digital stereophotogrammetry using human participants in dynamic 

movement is the influence of soft tissues (STA) upon data analysis. Inter-subject variability 

can result in errors as markers placed upon the skin can move relative to the desired joint or 

bone location, as well as elastic components of the soft tissue varying during action and 

between subjects (Leardini, Chiari, Della Croce & Cappozzo, 2005). In order to avoid 

invasive percunateous techniques that could affect the pedalling action, quantification of 

individual STA would provide a more detailed an accurate representation of personal and 

group characteristics. 

In conclusion, the data in this study show that kinematic differences exist between stable and 

unstable cyclists when pedalling upon a novel pedal platform that is free to move during the 

pedal stroke, and that the level of motor control creates different needs for the individual 

cyclist. Consequently, commercial cleat systems and the Q Factors provided by cranks may 

possess insufficient ranges of adjustment, and further investigation is required to determine in 

what way this could be a limiting factor for power production and injury prevention during 

cycling. Future work should compare SSQ and standard Q Factors, and how gross 

mechanical efficiency and oxygen uptake are affected whilst cycling.  
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4 OPTIMUM Q FACTOR AND LABORATORY TIME TRIAL 

PERFORMANCE 

The previous study found that more stable cyclists tended to train for more hours and choose 

a Q Factor that was below standard (<150mm) which in the first study provided a 

performance benefit at submaximal intensities. This study looked to use trained cyclists 

working at a high level of aerobic capacity in the form of a time trial, using different Q 

Factors from 90-180mm to see whether the improvement in gross mechanical efficiency at 

<150mm was mirrored. Trained male cyclists used to time trial competition (including two 

national record holders) performed four time trials with no prior knowledge of Q Factor and 

its effects for the purpose of evaluating performance at maximal capacity. 

 

This chapter has been submitted to the Journal of Science and Medicine in Sports and is 

currently under review. 
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4.1 Introduction 

No data have been published on what Q Factor will be optimal for the individual cyclist.  

Previous research has investigated step width whilst walking (Donelan et al., 2001;Arellano 

& Kram, 2011) where preferred step width results in a lower metabolic cost compared with 

wider or narrower than preferred. During cycling, crank arms (and therefore Q Factor) are 

fixed whilst riding, unlike the freedom of movement permitted during unrestricted walking. 

By manipulating Q Factor in order to present the cyclist with a range of movement patterns, it 

has been found that lower Q Factors (<150mm) are 1.5-2% more mechanically efficient at 

submaximal intensities (Disley & Li, 2012). However, it is unclear whether this improvement 

is mirrored when working at a high level of aerobic capacity, such as a time trial (TT). 

The aims of this study are to examine whether Q Factors <150 mm provide improvements in 

power output at maximal aerobic capacity, and the effect of different Q Factors from optimal 

on TT performance. 

It is hypothesized that: 

1. Mean power output during a  24 min TT will be greater at Q Factors <150mm. 

2. Deviation away from the Q Factor that results in optimal performance (OQ) will 

cause a further decrease in power output. 

4.2 Methods 

 4.2.1 Participants 

Ten trained male cyclists (VO2max 60.7 ± 6.8ml.kg.min-1, peak power output (PPO) 361.4 ± 

23.0w, mass 77.3 ± 6.1kg, height 182.7 ± 5.5cm, age 23.7 ± 6.0 yrs) volunteered for the study 

and gave informed consent. All participants had a >2yr history of competition in TTs and 

cycle racing. The study was approved by the local ethics committee. 
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4.2.2 Setup 

Testing was performed upon a custom cycle ergometer, adjustable in terms of handlebar 

position, saddle height, seat tube angle and Q Factor. A proprietary crank system with 

removable bottom bracket axles provided Q Factor adjustment. Crank length was set at 170 

mm and participants’ own pedals and shoes were used throughout. A Powertap (Saris, USA) 

mounted upon a resistance unit (Tacx i-Magic, Tacx, The Netherlands) was used in order to 

measure power output and cadence. The Powertap has been shown in previous research to be 

a reliable and repeatable device (Bertucci et al., 2005; Peiffer & Losco, 2011).  

 4.2.3 Protocol 

Participants were required to visit the laboratory on five occasions. The first visit consisted of 

an incremental exercise test in order to determine VO2max and peak power output (PPO). 

Participants arrived at the laboratory and were permitted to adjust the ergometer to their 

preferred riding position. This was recorded and then replicated for all subsequent trials. The 

test consisted of 3 min stages at self selected cadence and 150 mm Q Factor, starting at 200 w 

and increasing by 30 w every 3 min until volitional exhaustion. During the final ~60sec of 

each stage, expired gas was collected using Douglas bags in order to determine VO2max. PPO 

represents the highest mean 60sec power output during the trial, and VO2max represents the 

final ~60sec bag collected during the trial at an RER >1.15. 

Before arriving at the laboratory for visits 2-5, participants were required to complete a 12 hr 

food diary and replicate it before each trial. Visits 2-5 were conducted using four different Q 

Factors (90, 120, 150 and 180 mm) which were randomly assigned for each visit. Participants 

warmed up for 15min (two 5 min efforts at 60% PPO and active recovery of 3min at <100 

w). This was followed by the 24 min TT at maximal intensity. Participants were provided 

only with a display showing time and were requested to complete the TT at as high an 



	
  

75	
  
	
  

intensity as possible. Resistance of the electromagnetically braked unit was self selected 

during the trial. Position was standardized with hands on the tops of the handlebars and water 

provided ad libitum. Participants were all trained cyclists accustomed to TT efforts on an 

indoor trainer, and therefore no familiarization trial was required (Sporer & McKenzie, 

2007;Thomas et al., 2011).  

 4.2.4 Analysis 

Repeated measures ANOVA was used in order to determine main effects of Q Factor on 

power output, cadence and pacing, and post hoc analysis was performed using Fisher’s t tests 

where necessary. If the laws of sphericity were violated, Greenhouse-Geisser correction was 

used. Pacing during the TTs was examined by splitting the mean power for each Q Factor  

into four 6 min “bins”. Correlations represent Pearson correlation coefficients. α was set at 

0.05. 
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4.3 Results 

 Q Factor (mm) 

 90 120 150 180 

Power output (w) 287.7 ± 28.7 292.8 ± 29.8 290.1 ± 26.4 288.0 ± 30.4 

Cadence (rpm) 98.5 ± 8.6 97.7 ± 5.5 99.7 ± 7.0 98.8 ± 7.0 

 

Table 6. Power output and cadence during the four TTs. All values Mean ± SD. 

 

No overall significant differences in PO were found between TTs at the four different Q 

Factors (F(1,1.652)=0.738, p=.470). No difference was seen in freely chosen cadence during 

the TTs (F(1,2.380)=1.412, p=.267). 
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Figure 18. Decrease in power output as Q Factor deviates from OQ. Each line represents one 

participant. Mean OQ was 144mm.  

 

Mean Q Factor at the highest power output was 144.0±8.7mm. As Q Factor was increased or 

decreased from OQ power output reduced by ~3.6%.  
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Figure 19. Pacing strategy during the TTs. 

Pacing strategy was significantly different from even in the Q180 TT (F(1,1.887)=6.442, 

p=.009), and characterized by a slower third quarter (p<.016).  

 

4.4 Discussion 

When normalized to best performance, a continual decline in power output was seen as Q 

Factor deviated from optimal (144 mm).  

A deviation of 22.3mm saw a drop in power output during the TT of 3.6%, or 13.1 w, up to a 

maximum of 5.5% or 16.4 w at Q Factors 45 mm away from OQ. During a 16km outdoor TT 

lasting ~24min in duration, this would result in a ~26-36sec increase in finishing time.  

In the present study a remarkable increase in power output is seen at OQ compared with the 

other trials, ~2% higher than model predicted best power. This finding agrees with the work 
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of Donelan et al, (2001) in step width during human walking: optimal step width resulted in a 

large decrease in oxygen cost compared with widths that were wider or narrower.  

Previous data exploring OQ at submaximal power outputs found an increase in gross 

mechanical efficiency at <150mm (90 and 120mm (Disley & Li, 2012). In the present study 

no participant recorded their best performance at 90mm, which suggests that the benefit of 

such a low Q Factor is reduced as intensity increases. This may be due to differences in 

muscular recruitment that are only seen at higher power outputs, however the level of 

activation of major cycling muscles was not measured here and should be the subject of 

future research. Nevertheless, mean OQ in the TTs was <150mm, which suggests that 150-

155mm (typical Q Factors for road and TT racing bicycles) may not, on average, result in the 

best performance during a TT. It should be noted that self selected cadence was not found to 

be different between the TTs: large scale changes in muscular activation have been shown to 

be related to cadence (Sanderson et al., 2006; Bieuzen et al., 2007; Dantas et al., 2009) and so 

we might expect that substantial muscular recruitment changes would be reflected in a 

difference in cadence.  

The results of the pacing analysis showed that Q180 resulted in a non-even pacing strategy, 

characterized by a hard start (mean power for first quarter = 298.9 w) and easier third quarter 

(278.6 w) compared with mean power (288.0 w). There was no significant difference 

between pacing bins for the other Q Factors. Non even pacing strategies in TTs >5 min in 

duration have been shown to result in detrimental performance (Ham & Knez, 2009;Peveler 

& Green, 2010; Thomas et al., 2011a;Thomas et al., 2011b), although here there was no 

significant difference in overall mean power between the TTs. It is unclear why the Q180 

trial should result in such a variable pacing strategy compared with the other trials, as 

although 180 mm is a non standard Q Factor for a cyclist accustomed to road TTs, 90 and 

120 mm also represent non standard Q Factors. It is possible that perception of effort is 
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altered at different Q Factors, and at the widest Q Factor this altered perception results in a 

non-optimal pacing strategy. If perception of effort is decreased at OQ, this will result in a 

higher mean power output.  

 

4.5 Conclusions 

Mean OQ was found to be 144 mm  in the present study. OQ differed between participants, 

however it is important to ensure that the cyclist is riding at the correct Q Factor, as deviation 

away from OQ can cause a performance decrease of >5%. Further study is required in order 

to establish a method for predicting OQ. 
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5 METABOLIC AND KINEMATIC EFFECTS OF SELF SELECTED Q FACTOR 
DURING BIKE FIT 

This final study was designed to explore how an individual’s own self selected Q Factor 

affected gross mechanical efficiency and kinematics compared with the standard Q Factor of 

150mm and wider/narrower Q Factors. In addition, static and dynamic testing was performed 

in order to find a technique that could predict a cyclist’s self selected Q Factor. Trained 

cyclists were recruited and performed submaximal pedalling using the custom floating pedals 

to determine self selected Q Factor, followed by using their own shoes and pedals at a range 

of Q Factors whilst concurrently measuring gross mechanical efficiency and kinematics of 

the lower limbs.  

	
  

This chapter has been accepted by Research in Sports Medicine and is due for publication in 
2014. 
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5.1 Introduction 

The bicycle has undergone many evolutions over its ~150yr history. The original velocipede 

required the pilot to run or walk, partially suspended and supported by a frame and saddle 

equipped with two wheels front and rear. The major difference between later bicycles and the 

velocipede is the chainwheel drive system, which requires the pilot to be suspended off the 

ground. The introduction of the chainwheel and crank arms creates a further fixed point of 

contact for the rider (as well as the handlebars and saddle), reducing the kinematic freedom of 

the lower limbs away from the locomotive action that propelled the velocipede. 

In scientific research, due to the popularity of the bicycle as a form of exercise and transport, 

the optimisation and self selection of position upon the bicycle has been explored, mainly 

through the location of the handlebars and saddle (e.g. de Vey Mestdagh 1998; Silberman et 

al. 2005; Ferrer-Roca 2012). Nearly all research has focused upon adjustments along the 

sagittal plane, such as fore-aft and vertical location of the saddle, and saddle angle (Heil, 

Wilcox & Quinn 1995; Price & Donne 1997; Umberger, Scheuchenzuber & Manos 1998; 

Peveler 2008; Fonda et al., 2011; Bisi et al. 2012), location of the handlebars and hand 

position (Usabiaga et al. 1997; Duc et al. 2008) and length of the crank arms (Martin & 

Spirduso 2001; Barratt et al. 2011). Yet the human body moves in 3D space: recent research 

has examined how changes in positioning of the feet on the pedals along the frontal plane 

(known as Q Factor) can affect physiological parameters such as gross mechanical efficiency 

(Disley &  Li, 2012a).Therefore, in order to optimise human interaction with the bicycle, 

location and movement in 3D space should be taken into account . 

Individual morphology of cyclists is rightly used to explain differences in the optimal setup 

of cycling equipment both in the laboratory and outdoors (de Vey Mestdagh 1998; Silberman 

et al. 2005; Laios & Giannatsis 2010). Work examining self selection of this position has 
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shown that cyclists are able to optimise their setup based upon their individual morphology 

and anthropometric characteristics. Research has been performed on saddle height which 

reflects this (Peveler 2008; Sanderson & Amoroso 2009; Ferrer-Roca et al. 2012), and 

provided calculated ranges within which the cyclist should choose their own optimal saddle 

height, for example 108.6-110.4% of inseam length (Ferrer-Roca et al. 2012). Ultimately, the 

optimal position is decided by the cyclist. 

In order to determine the effect of changing position, performance based tests (Gnehm et al., 

1997; Ashe et al. 2003; Jobson et al. 2008) and physiological markers such as oxygen 

consumption and efficiency (Grappe et al. 1998; Leirdal & Ettema 2011; Bisi et al. 2012) 

have been used in order to detect improvements.  

In addition, the reasoning behind a self selection of position can be associated with injury and 

comfort. The knee is the most unconstrained joint during the pedal stroke, compared with the 

hip (supported by the saddle) and ankle (whose range of motion is constrained by the pedal 

circle). Although the knee must move within an arc in all three axes, the possibility for 

deleterious movement leads to knee pain being a critical factor in cycling injury (Silberman et 

al. 2005; Bini, Hume & Croft 2011). Knee pain can affect all cyclists from amateurs to 

professionals (Wanich et al. 2007; Clarsen, Krosshaug & Bahr 2010), and low knee 

movement along the frontal plane has been suggested as a factor that can reduce pain and 

increase comfort (Silberman et al. 2005; Abt et al. 2007). Previous research has shown that 

more stable cyclists in knee movement along the frontal plane tend to be more experienced 

(Disley & Li, 2012), indicating that knee movement in the frontal plane could be affected by 

training.  

The bicycle was designed to use the locomotive ability of the human body for assisted 

forward motion. Any self selection of the suspended position on the bicycle for comfort or 
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injury purposes should therefore be based upon the action of bipedal walking. At submaximal 

levels when movement patterns begin to diverge from the simple seated cyclical motion there 

is an increase in oxygen cost (Ryschon & Stray-Gundersen 1991; Tanaka et al. 1996) and/or 

breathing frequency (Millet et al. 2002; Harnish, King & Swensen 2007). 

The combination of knee movement and efficiency has not been explored previously. We 

propose that they are linked –excessive movement in the frontal plane during the pedalling 

stroke is likely to produce non effective tangential forces at the pedal (Bini et al., 2013; Blake 

et al., 2012), resulting in a lower applied power output to the bicycle, and therefore lower 

efficiency.  

Self selected Q Factor (SSQ) on a bicycle is likely to be related to where the feet would 

naturally fall when allowed kinematic freedom, in the same way as varus/valgus motion for 

individuals (Hannaford et al., 1986; Sanderson et al., 1994) and also related to locomotive 

gait. Simple unrestricted tasks such as suspending the lower body freely, and examining foot 

placement during gait could predict SSQ. The aims of the study were to determine whether  

the use of SSQ would decrease knee variability and improve efficiency, and whether SSQ can 

be predicted off the bike.  

The authors hypothesise that: 

1. When given free range of motion, the use of SSQ will decrease variability at the knee 

compared with Q Factors wider or narrower than SSQ 

2. SSQ will provide a higher gross mechanical efficiency than wider or narrower Q 

Factors 

3. SSQ can be predicted using suspension and locomotion tasks. 
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5.2 Method 

10 trained cyclists (7 male, 3 female, 27 ± 10 years old, 71.4 ± 8.1kg, 179.6 ± 5.0cm. Peak 

power output (PPO) reached during the incremental exercise test was 321 ± 32w and VO2 

max 56.0 ± 7.0 ml.kg.min-1) volunteered to take part in the study and provided informed 

consent. The study was approved by the local ethics committee. Participants visited the 

laboratory on three occasions, all separated by >48hrs. 

 5.2.1 First visit 

The first visit consisted of an incremental test to exhaustion to determine VO2max and PPO. 

All testing was performed upon an adjustable cycle ergometer, equipped with a Powertap 

torque measuring device (Powertap Elite+, Saris, USA) to record power, and mounted upon a 

Computrainer Pro (Racermate, USA). Participants used their own shoes, and selected their 

own handlebar and saddle position which were recorded and replicated for subsequent trials. 

Crank length was set at 170 mm for all trials. 

For the incremental test, after a warm up period of <8 min at <100 w, participants began 

pedalling against a fixed resistance of 100 w (female) or 200 w (male), increased by 30 w 

every 3 min until volitional exhaustion. Expired gas was collected in Douglas bags during the 

final ~1 min of each 3 min stage in order to determine respiratory variables. PPO represents 

the highest 1 min power reached at the end of the incremental test, and VO2max the peak value 

from the final Douglas bag. 

 5.2.2 Second and third visit 

In the second and third visit, participants were instrumented with reflective markers for the 

purpose of 3D kinematic analysis, in nine locations of the lower body: lateral malleolus, 

medial malleolus, lateral femoral epicondyle, superior anterior iliac crest on both sides, and 
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upon the sacrum. In addition, for bare foot analysis markers were placed upon the 

intermedius phalanx of the digitus pedis secundus and distal edge of the calcaneus, or the 

corresponding surface locations along the centre line of the cycling shoe. Locations were 

marked with a washable pen, and photographs taken to ensure repeatable marker placement. 

Nexus software (Oxford Metrics Group, UK) was used to determine marker location using 

thirteen infrared cameras recording at 250Hz.  

After instrumentation, participants completed two tasks. The first consisted of walking a 

distance of 6 m barefoot before stepping onto a box 15 cm high at normal walking speed. 8 

trials were conducted, 4 trials stepping up with the right foot and 4 trials with the left foot, 

and 3D kinematic data recorded throughout each trial, and mean marker location taken for the 

static position on the box, as well as mean step width during the stepping period. For the 

second task participants were required to suspend themselves off the ground for a period of 

>5 sec in the gymnastic support position, by use of the arms placed on two parallel bars 

placed either side of the body above hip height. 6 trials were completed, and participants 

instructed to relax their lower body and look forward during suspension. 3D kinematic data 

were recorded during suspension for 5sec and the mean marker location taken.  

Participants were then mounted upon the adjustable ergometer, equipped with custom 

“floating pedals” allowing free movement of the foot in the lateral plane whilst cycling 

(Disley & Li, 2012b). Workload was set at 60% of PPO and participants instructed to pedal at 

90 revolutions per minute (rpm) for 5 min, during which kinematic data were recorded for 10 

sec at the end of each minute in order to determine self selected Q Factor (SSQ). Participants 

were instructed to look at a computer screen mounted upon the handlebars to ensure a 

consistent cadence and not to move their hands from the handlebars whilst pedaling. 
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After a rest period of 4 min, 4 x 8 min bouts of pedaling were conducted at 60% PPO and 

90rpm, separated by 4 min of rest. Participants own pedals and shoes were used with 4 

different Q Factors: SSQ, SSQ – 30 mm (SSQ-30), SSQ + 30 mm (SSQ+30) and 150 mm 

(Q150). Q Factor was manipulated using axles of different lengths combined with spacers to 

move the cranks towards and away from the centerline of the bicycle in 1 mm increments. 

Minimum possible Q Factor was 92 mm. The order of Q Factors was randomized. During 

each bout of pedaling, expired gas was collected using two Douglas bags for periods of ~120 

sec and ~90 sec for the purposes of determining gross mechanical efficiency (GME). 3D 

kinematic data were collected for 4 x 10 sec periods at 1, 2, 3 and 8 min.  

 5.2.3 Analysis 

All data presented represents the average of visits two and three for each participant. Two 

visits were used for the purpose of evaluating whether a training effect was present. Raw 3D 

kinematic data were exported at 250Hz for analysis.  

Step width measured via Vicon raw data represents the lateral distance in mm between the 

medial malleoli, once static upon the step box during the first dynamic task. Hanging ankle 

distance represents the mean lateral distance in mm between the medial malleoli during a 5 

sec period of suspension.  

SSQ represents the average SSQ during the 5 data collection periods. 

Knee variability during the 8 min bouts of pedaling was calculated as the standard deviation 

of movement of the lateral femoral epicondyle marker along the frontal plane. Data were 

averaged between left and right legs over the 4 data collection periods. % best knee stability 

represents the knee variability for one Q Factor condition divided by the best (i.e. lowest) 

knee variability achieved for any Q Factor. 
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GME was calculated using the ratio of work accomplished in kcal.min-1 to energy expended 

in kcal.min-1 (Disley & Li, 2012a). The Douglas bags were evacuated of residual volume 

before use to minimize potential error. GME was only calculated if RER remained <1.00, and 

was averaged over the two bags for each Q Factor. The same dry gas meter (Harvard, UK) 

and gas analyser (Servomex, UK) were used during testing to ensure repeatable analysis of 

expired gas. 

Data were analysed using PASW Statistics version 17 (IBM, USA). Results are presented as 

Mean ± SD. Two way repeated measures analyses of variance (ANOVA) were conducted to 

determine main effects using Bonferroni correction. The Greenhouse-Geisser correction was 

used if the laws of sphericity were violated. Correlations represent Pearson correlation 

coefficients – any data points more than 2SD away from the mean were removed. α was set at 

0.05. 
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5.3 Results 

Condition Q Factor (mm) GME (%) 

 

Knee variability (mm) 

SSQ-30 114 ± 10 18.42 ± 0.37 8.0 ± 1.6 

SSQ 142 ± 12 18.65 ± 0.31 7.7 ± 1.6 

SSQ+30 172 ± 12 18.37 ± 0.59 8.0 ± 1.8 

Q150 150 ± 0 18.62 ± 0.44 7.9 ± 1.8 

 

Table 7. Q Factor, GME and knee variability for the four conditions. No significant 

differences were found between GME or knee variability using the different Q Factors 

(p>.05). 

No significant differences were found between GME (F(1,3)=1.266, p=.306) or knee 

variability (F(1,2.284)=0.756, p=.498) among the different Q Factors (Table 6). Mean SSQ 

across all participants was 142 ± 12 mm. Due to previously explained restrictions in 

minimum Q Factor, mean SSQ-30 was 114 mm rather than 112 mm as some participants 

adopted a low SSQ (<140mm). 
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Figure 20. Gross mechanical efficiency and % best knee stability. Error bars represent the 

standard error across all participants for both GME and knee stability. Higher % best knee 

stability represents a more stable knee whilst pedalling. SSQ (142mm) provides the best 

combination of GME and knee stability, in contrast to SSQ+30 and SSQ-30 which have both 

lower GME and knee stability 

 
 

When knee variability was normalized to best (i.e. lowest) performance, SSQ (142 mm) 

presented the best combination of GME and knee stability (Figure 1). At Q Factors 30 mm 

higher and lower than SSQ (SSQ+30 and SSQ-30), knee stability decreases with a concurrent 

decrease in GME. 

A strong correlation was found between SSQ and hanging ankle distance during the hanging 

task (R2=0.794, p<.002; Figure 2). The Y intercept of the equation for this relationship (y = 

SSQ 
Q150 

SSQ-30 

SSQ+30 
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0.569x + 114.74) implies a minimum Q Factor of ~ 115 mm predicted from hanging ankle 

distance. 

However the walking step task resulted in a step width that had poor correlation with SSQ 

(R2=0.091). Step width ranged from 37 mm to 139 mm with a mean of 70 mm.  

 

Figure 21. Relationship between Self Selected Q Factor and distance between the medial 

malleoli (both in mm) during the hanging task. One outlier removed. R2=0.794, p<.002. 

 

No significant differences were found within participants for any of the dependent variables 

measured between visits two and three, with CV = 4.64%. 
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5.4 Discussion 

Self selected Q Factor represents a part of the appropriate adjustments to be made to a bicycle 

to ensure an optimal fit. In the present experiment a range of Q Factors above and below SSQ 

were used to determine effects upon kinematic and metabolic variables. SSQ provided the 

best combination of knee stability and gross efficiency, compared with SSQ+30, SSQ-30 and 

Q150. SSQ can be predicted by use of a simple hanging task. 

Previous work exploring GME and Q Factor has shown that lower Q Factors (<150 mm) 

provided higher GME than wider Q Factors (>150mm) (Disley & Li, 2012a). Here, SSQ was 

142mm, comparable with previous data using a range of cyclists (145 mm; Disley & Li, 

2012b), however there was no significant difference in GME alone between the different Q 

Factors. It is possible that the smaller range explored in this study (58mm) represents an 

upper detection limit in the determination of optimal Q Factor on the basis of GME alone, 

compared with previous data (range of 90 mm; Disley & Li 2012a). The same can be said for 

knee stability, but once normalised to personal best stability and compared alongside with 

GME, a trend occurs where the further the Q Factor deviates from SSQ, the more GME and 

knee stability decrease. Similar trends have been shown in time trial performance as it relates 

to an individual’s optimal Q Factor (Disley & Li, 2012). 

The combination of highest GME and best knee stability found at SSQ partially supports the 

first two hypotheses. When cyclists were permitted to ride at SSQ, this resulted in a positive 

kinematic and metabolic combined effect. The potential for both an improvement in GME 

and a reduction in knee variability allows the cyclist to cycle faster with potentially a lower 

risk of injury (Silberman et al. 2005; Abt et al. 2007). The focus on the knee joint is 

important due to the prevalence of knee injury during cycling and the range of motion 

permitted. Compared with the hip and ankle joints (and those of the upper torso), the knee 
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joint is comparatively unconstrained and free to move during pedalling, allowing maladaptive 

technique to cause injury and clinical pain. Further study should examine the potential 

improvements in knee kinematics with changes to the bike setup, and perhaps how training 

can affect changes in abduction and adduction knee angle. 

The hanging task provided a strong correlation between ankle distance and SSQ. This task 

allowed the participants to adopt an unconstrained position of the lower limbs. Upon the 

bicycle the cyclist is suspended from the saddle, the hands steering and supporting the 

forward leaning torso, and feet rest upon the pedals. The custom floating pedals allow the 

cyclist complete freedom of motion during the pedal stroke, which here is similar with the 

freedom of motion allowed by the unconstrained hanging lower limbs. The intercept of the y 

axis in Figure 2 should therefore provide a theoretical minimum Q Factor of 115mm, which 

compares favourably with the results of previous experiments where the minimum Q Factor 

exhibited by trained cyclists was >110mm (Disley & Li, 2012b).  

No relationship was found between the walking step task and SSQ, and this could be related 

to balance issues: as the participants stepped up onto the box, the resulting stance width was a 

result of both the anthropometric characteristics of the individual and the need to remain 

balanced. This could have limited the minimum stance width. As walking step width has an 

effect on economy of walking (Donelan et al., 2001), it was hypothesised that the lower limbs 

may choose an SSQ closest to walking step width, but this was not found here. 

There is need for further analysis of cyclists with a much larger range of ability than the 

trained cyclists in the present study. The use of a hanging task to predict SSQ could perhaps 

allow the untrained or inexperienced cyclist to reduce any knee variability to a greater extent 

than that displayed here. The simplicity of the task would allow it to be conducted without 

the need for complex equipment, which in turn would permit the analysis of cyclists outside 
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of the laboratory. Indeed, recommendations on Q Factor could be provided to the cyclist at 

point of purchase in order to reduce risk of injury and improve efficiency, in a similar manner 

to saddle height (de Vey Mestdagh 1998; Ferrer-Roca et al. 2012). Future study of bicycle fit 

should examine whether other variables, such as handlebar width and saddle width have an 

effect on physiological and biomechanical factors. 

The exploration of difference planes of motion during the process of bicycle fit is therefore 

essential for an holistic optimisation. SSQ can be predicted using a simple hanging task and 

provides the best combination of GME and knee stability, allowing for increased comfort, 

speed, and a lowered risk of injury. 

The present study provides new data about optimising the position on a bicycle and how a 

simple test off the bicycle can inform bicycle fitting and potential for injury prevention. The 

data is limited to trained participants and without including other alterations in bicycle 

geometry. Further study might explore the effect of changing Q Factor on long term cycling 

kinematics, in conjunction with alterations in saddle height and handlebar location. 
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6 DISCUSSION 

6.1 Aim 

The aim of this thesis was to explore the effect of manipulating Q Factor on cyclists’ 

physiological and kinematic variables. The human body is designed for walking, and the 

bicycle seeks to harness this action, so a Q Factor that approaches walking step width could 

provide a benefit for the cyclist. The importance and use of self selected positioning on the 

bicycle at the pedal is likely to provide the best combination of comfort and efficiency 

compared with standard positioning.  

6.2 Role of Q Factor in cycling 

Q Factor in cycling forms part of the adjustments made to a bicycle in order to allow each 

individual rider to pedal with comfort and improved efficiency. Q Factor has not been 

explored previously in scientific research, as most focus has been upon on the two 

dimensional adjustments of saddle height, handlebar location and crankarm length (Barratt et 

al. 2011; Bisi et al. 2012; Duc et al. 2008; Fonda et al., 2011; Heil, Wilcox & Quinn 1995; 

Martin & Spirduso 2001; Peveler 2008; Price & Donne 1997; Umberger, Scheuchenzuber & 

Manos 1998; Usabiaga et al. 1997). Although the measurement has been acknowledged in the 

past, first known as “tread” and now “Q Factor”, manufacturers and cyclists have no 

guidelines or recommendations as to the optimal Q Factor for their given application, both 

from performance and comfort perspectives.  

It is critical to understand how to best optimise the cyclist’s interface with the pedal. The 

three contact points of pedal/handlebars/saddle must be correctly adjusted for the individual 

cyclist, to avoid a reduction in performance or risk of injury. During the gait cycle, the human 

body has entirely free range of motion, apart from footstrike where the foot is in contact with 

the ground. Approaching the ground the foot does not have to follow a set trajectory before 

applying pressure and propelling the body forward, however in cycling the location of force 

application is fixed, and the trajectory of the lower limbs governed by the arc of the pedal. 

Walking gait is a relatively open system, compared to the closed system of pedalling, and 

thus any errors in setup that do not permit the cyclist to pedal according to their individual 

needs will result in a less efficient, less comfortable action. 
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6.3 Practical implementation of a change in Q Factor  

The range of Q Factors used in this research was 90-180mm with a fixed setup, and 90-

370mm using the floating pedals. 90mm was the minimum permitted by the ergometer, and 

any lower would be impractical to use on a mass production bicycle (or even an ergometer), 

due to the need for a chain drive or shaft drive system between the crank arms. A fixed 

maximum of 180mm may have been too low to exhibit large scale changes in muscular 

activity, however it was unclear what effect (if any) there would be if the participants were to 

use a dramatically increased fixed Q Factor >200mm. 180mm is a Q Factor found on 

production cranks for mountain bicycles and therefore was deemed safe to use. Many of the 

participants found this widest Q Factor to be uncomfortable compared with the narrower Q 

Factors, indicating that keeping the maximum fixed Q Factor <200mm was the correct 

choice. During testing in Chapter 3 23 of the 24 participants reported a dislike of Q180, and 

that the pedaling action felt “odd” or “uncomfortable”, preferring instead to pedal with 90 or 

120mm. 

Some pedal manufacturers (Look Cycle International, France; Speedplay Inc., USA; Time 

Sport International, France) permit the changing of pedal axle length or cleat orientation to 

move the foot closer to, or away from the crank arm. As previously discussed, manufacturers 

of crank arms are generally aware of the concept of Q Factor, but are without concise 

information as to the most effective Q Factors to be used. Nevertheless, road bicycle Q 

Factors below 150mm (Campagnolo Ultra Torque & Rotor 3D) and even below 140mm 

(Cannondale Si) can be achieved with production crank arms and standard bottom bracket 

systems – and with modification <130mm can be achieved (e.g. Shimano Dura Ace 7402 

crank arms with a 102mm JIS bottom bracket at 128mm). The advent of many new bottom 

bracket standards in manufacturing (BB30, BB86, BB90, BBright etc.) and the integration of 

many frames and components (eg. Look I-Pack) permits now more than ever the possibility 

of narrow Q Factor bicycles for all ranges of cyclists. The effect of lower Q Factors in other 

modes of cycling such as maximal sprint track cycling and cross country/downhill mountain 

biking is also important to quantify, especially in mountain biking where Q Factors can 

approach 180mm. Many road bicycles have Q Factors higher than 150mm, especially entry 

level road bicycles, and this is increased ~20mm further with mountain bicycles. Although 

there are issues with crankarm clearance for mountain bicycles (largely due to increased tyre 

cross section and larger chainstay width), no consideration has previously been paid to 

attempting to reduce Q Factor on a mountain bicycle and a 20mm lower Q Factor would not 
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be too difficult to accommodate. Even the manufacturers Walser Bicycles (Switzerland), who 

provide a custom narrow Q Factor crankarm and frameset combination only allow one Q 

Factor rather than an adjustment. A personalised bike fit should therefore include a measure 

of Q Factor to fit the cyclist, as such common measures as saddle height are synonymous 

with the idea of correct fit to the bicycle. During the experiments it was clear that many 

cyclists were unaware of the measurement of Q Factor, and had little understanding as to 

what potential benefits an optimisation could provide. The role of Q Factor when discussing 

bike fitting should be raised given the potential performance and kinematic improvements 

available to the cyclist, but of course during an holistic approach to the fit. 

A reduced Q Factor should provide a benefit to the athlete, providing increased GME along 

with decreased lateral knee displacement. 

6.4 EMG activity and metabolic improvements through a change in Q Factor 

In Chapter 2 a significant increase (p<.006) in GME was found for 90 and 120mm Q Factor 

(both 19.38%) compared with 150 and 180mm (19.09% and 19.05%), however there were no 

concurrent changes in level or timing of activation of the four muscles analysed (vastus 

lateralis, vastus medialis, tibialis anterior and gastrocnemius medialis). The effective use of 

GME as explained previously using Douglas bags and careful analysis allows for this level of 

analysis, compared with e.g. the use of an online gas analyser and/or DE as a submaximal 

metric which would introduce error (Castronovo et al., 2013; Ettema & Loras, 2009; Hopker 

et al., 2011; Moseley & Jeukendrup, 2001; Moseley et al., 2004). 

Previous work analysing the effect of changing stance width on muscular activation found 

changes during weighted squat exercise (Escamilla et al., 2001; McCaw & Melrose, 1999; 

Paoli et al., 2009), but there is scarce data on the effect of altered EMG activity and its 

relationship with GME. Previous research exploring positional changes or cadence effects has 

avoided the combination of GME and EMG analysis, often using either a combination of 

cadence and metabolic cost, cadence and EMG activity, or EMG activity and power output 

(Hansen & Waldeland 2008; Harnish et al., 2007; Millet et al., 2002; Neptune et al., 1997; 

Tanaka et al., 1996; Umberger et al., 1998; van Sickle & Hull, 2007; Welbergen & Clijsen 

1990).  

We would expect large scale improvements in GME based on positional changes to manifest 

in a reduction in EMG activity, however the improvement in GME found with the lower Q 
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Factors was significant but small, and so it is possible any reduction in activity was outside 

the signal-to-noise ratio found within the EMG system. In Chapter 4, there was no difference 

in self selected cadence between the four Q Factors, which may have been expected if there 

were substantial changes in muscular activity compared with cycling at a standard Q Factor. 

In addition other muscles involved in the cycling action could be responsible for the increase 

in GME at lower Q Factors: such as the rectus femoris, gluteus maximus and biceps femoris 

(Hug & Dorel 2009), and further research should explore how these may be affected with a 

change in Q Factor, and the subsequent effect and relationship with GME. Q Factor has not 

previously been explored in cycling – this research has shown that metabolic improvements 

are possible, even without a large change in EMG from the muscles analysed. 

The improvement in GME at submaximal power outputs is shown below for various 

activities requiring exercise at <60% PPO. Such time savings over the course of a long 

distance triathlon (Ironman) or a multi-day stage race in cycling (e.g. the Tour de France) 

could have a measurable impact on the final result, either from allowing the cyclist to output 

more power for the same metabolic cost, or to output the same power, but at a reduced 

metabolic cost requiring less energy expenditure and therefore need for energy intake. 
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Figure 22. Time saved during submaximal (<60% VO2max) cycling activity using narrower 

Q Factors than standard (<150mm). 

 

6.5 Aerobic performance and Q Factor 

In contrast to the increased GME found at low levels of aerobic cycling (60% PPO) with Q90 

and Q120, there was no concurrent increase in time trial performance at ~80% PPO using 

Q90 and Q120, compared with Q150 and Q180. The measurement of GME is not possible at 

higher external workloads than ~60% PPO, as steady state would not be maintained and RER 

would rise above 1.0 (Hopker et al., 2011), hence the use of a performance metric such as a 

time trial. There is a relationship between GME and performance during time trials, however 

other factors such as VO2max and lactate threshold will also affect performance (Jobson et 

al., 2012), and as the difference in GME was small (1.5-2% improvement in power output) 

then the effect of an increased GME may be outweighed by changes in VO2max and lactate 

threshold. GME has also been found to decrease after a time trial (Noordhof et al., 2014), and 

any subsequent work exploring the interrelationship between Q Factor, GME and time trial 

performance could involve the analysis of GME pre and post time trial performance. The use 

of a 24min or 16-20km time trial is concurrent with previous research, ensuring 

As has been explored in Chapter 4, there is an optimal Q Factor for each individual cyclist, 

the mean occurring at ~144mm, which is less than the 150mm standard found on road 

bicycles. Deviation from OQ caused a decrement in power output, indicating utilising OQ 

could provide a performance increase of 3.6% power output. The figure below shows 

examples of real world benefits based upon an increase in power output of 3.6% during time 

trial cycling.  
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Figure 23. Time trial performance improvements using OQ. 

 

Workloads higher than ~80% PPO (such as supramaximal sprint work) which have a 

contribution from anaerobic sources should also be investigated, both from a power output 

perspective but also as above in conjunction with EMG, as repeated sprint activity has been 

shown to result in a phase shift in EMG activity and a decrease in activity of relevant 

musculature, and altering Q Factor could have an effect in a sprint situation (O’Bryan et al., 

2014). 

6.6 Training status  

A range of participants were involved in the research, ranging from a former national 

champion and national record holder, multiple regional champion and other elite riders to 

club rides and regular commuters. Chapter 4 utilised a highly trained subsection of cyclists, in 

contrast to Chapters 2, 3 and 5 which included trained cyclists (eg. VO2max over 

~55ml.kg.min-1). Differences in EMG activity have been shown to be affected by training 

status (Hug et al, 2004; Smirmaul et al., 2010), as well as GME (Hopker et al. 2007) and 
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research exploring the manipulation of Q Factor on an untrained population should be 

considered. 

The 29 cyclists involved in Chapter 5 ranged from commuters who were cycling around 1 

hour per week, up to elite triathletes completing 16 hours of bicycle training each week. SSQ 

ranged from 107-180mm, meaning that no cyclist self selected a Q Factor above which they 

may have been exposed to during their training/riding on a standard bicycle. Given that some 

of the participants in this study rode more than one bicycle (eg. race vs. training bicycle, 

mountain vs. road bicycle), and for varying amounts of time during their weekly activity, it 

was not possible to measure a Q Factor that was most used by the cyclists without some level 

of error. In addition, the use of different pedal axle lengths and pedal cleats (as well as 

location of the cleats) would have added to this error – the Q Factor in this study was 

measured to a fixed point on the floating pedals, so the Q Factors were more relevant than a 

simple bike-to-bike comparison.  

However, it is less likely that the commuter cyclists would ever have been exposed to the low 

Q Factor of a high end road racing bicycle, and the converse is true for the elite 

cyclists/triathletes.  

Subject no. 18 5 6  28 30 26 

Weekly hours 1 1 1  14 15 16 

SSQ (mm) 147.33 159.93 165.75  146.66 141.00 153.47 

 

Table 8. Cyclists with the highest and lowest amount of weekly training and SSQ in the Free 

condition. 

The three cyclists with the highest number of training hours had a similar or lower Q Factor 

than standard road bicycles, whereas the three cyclists who only trained for one hour per 

week tended towards higher Q Factors. We would expect that exposure to higher Q Factors 

would cause a rider to self select that Q Factor, especially in an acute condition, and this 

raises the question of whether training at a lower Q Factor would reduce SSQ, and for how 

long a training period would be required. If the commuter cyclists at the lower end of the 

training scale self select a higher Q Factor on only 1 hour of riding per week, it suggests that 

it may not take that long to become accustomed to. In the same way that body position and 

training status has an effect on muscular recruitment during cycling (Ashe et al., 2003; 
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Chapman et al., 2008) training with different Q Factors could result in changes in muscular 

recruitment, and also GME. 

6.7 Repeatability of measurements  

As has been discussed previously, GME is less variable than DE and is unaffected by 

circadian rhythm (Moseley & Jeukendrup, 2001; Moseley et al., 2004; Noordhof et al., 2010). 

Nevertheless in Chapter 2, 3 and 4 all tests were completed at the same time of day and diet 

was replicated before each trial to remove the impact of e.g. carbohydrate intake on GME 

(Cole et al., 2014). 

A repeat trial in Chapter 5 was conducted in order to explore whether SSQ would be 

consistent between trials on separate days – no differences were found in SSQ with a CV of 

<5% which implies that it is a repeatable process to conduct acutely in the laboratory. Any 

changes in SSQ discussed in Chapter 3, as a result of training, would therefore need to 

involve cycling for more than twice per week for the short periods of time used in this 

experiment. From Chapter 3 we can estimate that 1 hour per week may well be sufficient to 

elicit a change in SSQ but this warrants further study. The use of randomisation compared 

with counterbalancing in the above studies may cause an order effect, and subsequent work 

can address this with counterbalanced trials using a change in Q Factor. 

 

6.8 Walking and range of Q Factors whilst cycling 

As walking is largely a submaximal activity, we can draw a comparison between walking 

economy and the GME of submaximal cycling <60% VO2 max. The most efficient Q Factors 

were 90 and 120mm for trained cyclists of either sex compared with higher Q Factors 

>150mm, which is similar to the 100-130mm range found during walking. Although in 

Chapter 2 the major cycling muscles analysed (gastrocnemius, vastus medialis, vastus 

lateralis, tibialis anterior) did not show changes in timing of level of muscular activity, there 

are other crossover muscles used in both cycling and the gait cycle, such as the rectus femoris 

and biceps femoris, as well as lateral stabilising muscles such as the adductor longus and 

tensor fasciae latae. A reduction in the activity and subsequent oxygen consumption of the 

muscle would result in a greater GME. Chapter 4 also showed that on average <150mm was 

optimal, even at a higher % of the VO2max and moving away from submaximal activity. The 

use of pedals instrumented with force sensors would determine any force effects by changing 
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the Q Factor and whether the angle of force application was improved (ie. less tangential 

force applied during the pedal stroke).  

In Chapter 3 the range of Q Factor available using the custom pedals was from 90-370mm, 

and it was only when the cyclists were allowed full range of motion  (rather than just lateral 

movement) that individual differences in Q Factor appeared. During walking there is 

complete freedom of movement during the gait cycle, and here the more experienced cyclists 

explored their degrees of freedom in order to find their SSQ (137mm). The less experienced 

cyclists self selected a Q Factor (153mm) that was very close to the 150mm of a standard 

road bicycle, which suggests that they have less ability to explore their degrees of freedom, 

instead self selecting close to standard.  

6.9 Individual gait 

In Chapter 5 the relationship between individual gait characteristics and SSQ again found that 

mean SSQ was lower than 150mm at 142mm, but that stepping and walking tasks did not 

predict SSQ. Kinematic analysis of the cyclists walking a distance of 6m before stepping onto 

a box 15cm in height provided no relationship between walking step width or static step 

width (once stationary on the box) and individual SSQ. Instead a hanging test, where the 

participants suspended themselves in the gymnastic support position had a strong correlation 

with SSQ (R2=0.794, p<.002). The Y intercept of the equation for this relationship (y = 

0.5692x + 114.74) implies a minimum SSQ of ~ 115 mm – in Chapter 3 the two lowest 

SSQ’s from all the participants were 107 and 113mm, and in Chapter 5 the lowest SSQ was 

120mm. It is likely that, in the same way that walking step width causes an increase in 

economy when it goes too low, minimum SSQ would be centered around 115mm and not 

below 100mm. A low Q Factor of 90mm as found in Chapter 2 may result in high gross 

mechanical efficiency, but perhaps at the cost of comfort. The effect of knee kinematics on 

injury potential is difficult to analyse in the laboratory, given the ethical constraints of 

allowing cyclists the risk of becoming injured.  

6.10 Moving away from SSQ 

The importance of SSQ is further highlighted when examining kinematic variability at the 

knee in Chapter 5. Although there was only a small difference in GME between the Q150 

condition and SSQ (142mm), knee stability increased by nearly 3% when using SSQ 

compared with Q150 as well as the increased GME. Moving 30mm higher or lower from 
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SSQ saw a reduction in GME of ~1.5% combined with a decrease in knee stability of ~3.5%, 

which follows the reduction in time trial performance of 3.6% found in Chapter 4, when Q 

Factor was changed 22mm from OQ (144mm). 

6.11 Individual characteristics and predictors 

The human body has evolved to be economical at walking, and the basis for lower Q Factors 

than are found on standard bicycles and individual position stems from an unique adaptation 

to walking. Individual morphology will determine the exact Q Factor required for 

performance and comfort, and SSQ results in less kinematic variability during the pedal 

stroke as well as increased GME. It is interesting that the best predictor of SSQ was a 

hanging task, where the legs were suspended and completely free to move, compared with a 

stepping activity where perhaps the precision of the task (walk 6 metres and then accurately 

step onto a box) prevented the cyclists from exploring free range of motion, compared with 

walking or running on a large treadmill or open space. However, the ease of using a hanging 

task to determine SSQ would make it more simple to execute for the end user cyclist. 

6.12 Further work 

The present work has examined a concept that has not previously been explored in scientific 

research. Q Factor has been shown to have an effect upon metabolic and kinematic variables 

in cycling, over a range of trained cyclists and at low and high aerobic power outputs. Q 

Factor is an important adjustment to the bicycle that should be considered alongside 

measurements such as crank length and saddle height. However, it is beyond the scope of this 

research to cover all possible effects of Q Factor on cycling performance and kinematics. In 

particular, further work should explore the role of muscles such as the gluteus maximus and 

biceps femoris and their recruitment during the pedalling stroke when Q Factor is 

manipulated, as the vastus lateralis and vastus medialis were found to be unaffected at 

submaximal power outputs in Chapter 2 in contrast to the original hypothesis. In addition, Q 

Factor may have an effect on EMG activity whilst fatigued, both at submaximal, maximal 

aerobic and supramaximal sprint cycling. Any large adjustment of Q Factor (ie. >30mm away 

from SSQ) at power outputs greater than PPO should be treated with caution, as the forces 

involved are increased dramatically during sprint cycling. Finally, this research was 

conducted with a standard upright position on the bicycle – narrowing the Q Factor may have 

a beneficial effect upon aerodynamics as previously discussed and so aerodynamic 
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measurements should be explored as well any potential change in SSQ or OQ as a result of 

adopting an aerodynamic position. 

6.13 Conclusions 

The human body is designed for locomotive action, both walking and running. Bicycles were 

first designed to harness this action and provide a faster mode of transport, and later into 

competitive sport. Technological advances have continued the evolution of the bicycle, and in 

recent years the widespread use of clipless pedals for all forms of cycling have increased the 

importance of correctly positioning the rider onto the pedals. 

In this thesis, we have seen that lower Q Factors than the standard 150mm for road bicycles 

provide performance and kinematic benefits that have not been examined previously. As part 

of the overall package of bicycle fit, individual cyclists will be able to make measurable 

improvements by finding and utilising their self selected Q Factor. 
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